
Trilinos Tutorial
For Trilinos Release 10.10

Sandia Report SAND2004-2189, September 2004, Unlimited Release

Last updated July 2010

Marzio Sala

Michael A. Heroux

David M. Day

James M. Willenbring

(Editors)

DE
PA

RTMENT OF ENERGY

• • U
N

ITED

STATES OF AM

ERI
C

A

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under Contract DE-AC04-94-AL85000. Approved for public release; further dissemination
unlimited.

Sandia National Laboratories
PO BOX 5800 Albuquerque, New Mexico, USA

www.sandia.gov

Preface

The Trilinos Project is an effort to facilitate the design, development, integration and ongoing
support of mathematical software libraries. The goal of the Trilinos Project is to develop
algorithms and enabling technologies within an object-oriented software framework for the
solution of large-scale, complex multiphysics engineering and scientific applications. There
is an emphasis is on developing robust, scalable algorithms in a software framework, using
abstract interfaces for flexible interoperability of components while providing a full-featured
set of concrete classes that implement all the abstract interfaces.

This document introduces the use of Trilinos, Release 10.10.0 and subsequent minor re-
leases 10.10.X. The presented material includes, among others, the definition of distributed
matrices and vectors with Epetra, the iterative solution of linear systems with AztecOO, in-
complete factorizations with IFPACK, multilevel and domain decomposition preconditioners
with ML, direct solution of linear system with Amesos, eigenvalues and eigenvectors compu-
tations with Anasazi, and iterative solution of nonlinear systems with NOX.

This tutorial is an introduction to Trilinos, intented to help computational scientists ef-
fectively apply the appropriate Trilinos package to their applications. Only a small subset of
all Trilinos packages are covered in this tutorial. Basic examples are presented that are fit to
be imitated.

The developers of each Trilinos package are acknowledged for providing excellent doc-
umentation and examples (and the code itself!), without which this document would have
never been possible. We also acknowledge the support of the ASCI and LDRD programs that
funded development of Trilinos, and the support of D-INFK department of the ETH Zürich.

Oscar Chinellato (ETHZ/ICoS) and Jens Walter (ETHZ/ICOS) are acknowledged for the
LATEX macros and styles used to format this document.

Marzio Sala
Micheal Heroux

David Day
James Willenbring

1

2

Contents

1 Introduction 7
1.1 Getting Started . 7
1.2 Installation . 9
1.3 Copyright and Licensing of Trilinos . 9
1.4 Programming Language Used in this Tutorial 9
1.5 Referencing Trilinos . 10
1.6 A Note on the Directory Structure . 11
1.7 List of Trilinos Developers . 11

2 Working with Epetra Vectors 13
2.1 Epetra Communicator Objects . 13
2.2 Defining a Map . 14
2.3 Creating and Assembling Serial Vectors . 17
2.4 Creating and Assembling a Distributed Vector 18
2.5 Epetra Import and Epetra Export classes . 20

3 Working with Epetra Matrices 23
3.1 Serial Dense Matrices . 23
3.2 Distributed Sparse Matrices . 25
3.3 Creating Block Matrices . 31
3.4 Insert non-local Elements Using FE Matrices 33

4 Other Epetra Classes 35
4.1 Epetra Time . 35
4.2 Epetra Flops . 35
4.3 Epetra Operator and Epetra RowMatrix Classes 37
4.4 Epetra LinearProblem . 39
4.5 Concluding Remarks on Epetra . 40

5 MATLAB I/O with EpetraExt 41
5.1 EpetraExt::VectorToMatrixMarketFile . 41
5.2 EpetraExt::RowMatrixToMatrixMarketFile 42
5.3 Concluding Remarks . 42

6 Generating Linear Systems with Triutils 43
6.1 Trilinos Util::CommandLineParser . 43
6.2 Trilinos Util::CrsMatrixGallery . 44

3

4 Contents

7 Iterative Solution of Linear Systems with AztecOO 53
7.1 Theoretical Background . 53
7.2 Basic Usage . 55
7.3 Overlapping Domain Decomposition Preconditioners 56
7.4 AztecOO Problems as Preconditioners . 57
7.5 Concluding Remarks on AztecOO . 58

8 Iterative Solution of Linear Systems with Belos 61
8.1 The Belos Operator/Vector Interface . 62
8.2 The Belos Linear Solver Framework . 62
8.3 Belos Classes . 65

8.3.1 Belos::LinearProblem . 65
8.3.2 Belos::Iteration . 66
8.3.3 Belos::SolverManager . 67
8.3.4 Belos::StatusTest . 69
8.3.5 Belos::OrthoManager . 69
8.3.6 Belos::OutputManager . 70

8.4 Using the Belos adapter to Epetra . 71
8.5 Defining and Solving a Linear Problem . 72

9 Incomplete Factorizations with IFPACK 75
9.1 Theoretical Background . 75
9.2 Parallel Incomplete Factorizations . 76
9.3 Incomplete Cholesky Factorizations . 77
9.4 RILUK Factorizations . 77
9.5 Concluding Remarks on IFPACK . 78

10 The Teuchos Utility Classes 79
10.1 Introduction . 79
10.2 Teuchos::ScalarTraits . 80
10.3 Teuchos::SerialDenseMatrix . 80
10.4 Teuchos::BLAS . 82
10.5 Teuchos::LAPACK . 82
10.6 Teuchos::ParameterList . 86
10.7 Teuchos::RCP . 88
10.8 Teuchos::TimeMonitor . 89
10.9 Teuchos::CommandLineProcessor . 90

11 Multilevel Preconditioners with ML 93
11.1 A Multilevel Preconditioning Framework . 93
11.2 ML Objects as AztecOO Preconditioners . 94
11.3 The ML Epetra::MultiLevelOperator Class 97
11.4 The ML Epetra::MultiLevelPreconditioner Class 98
11.5 Two-Level Domain Decomposition Preconditioners with ML 101

Contents 5

12 Interfacing Direct Solvers with Amesos 105
12.1 Introduction to the Amesos Design . 105
12.2 Amesos BaseSolver: A Generic Interface to Direct Solvers 106

13 Eigenvalue and Eigenvector Computations with Anasazi 109
13.1 The Anasazi Operator/Vector Interface . 109
13.2 The Anasazi Eigensolver Framework . 111
13.3 Anasazi Classes . 113

13.3.1 Anasazi::Eigenproblem . 113
13.3.2 Anasazi::Eigensolution . 114
13.3.3 Anasazi::Eigensolver . 115
13.3.4 Anasazi::SolverManager . 117
13.3.5 Anasazi::StatusTest . 118
13.3.6 Anasazi::SortManager . 119
13.3.7 Anasazi::OrthoManager . 119
13.3.8 Anasazi::OutputManager . 120

13.4 Using the Anasazi adapter to Epetra . 121
13.5 Defining and Solving an Eigenvalue Problem 122

14 Solving Nonlinear Systems with NOX 125
14.1 Theoretical Background . 125
14.2 Creating NOX Vectors and Group . 126
14.3 Introducing NOX in an Existing Code . 126

14.3.1 A Simple Nonlinear Problem . 128
14.4 A 2D Nonlinear PDE . 130
14.5 Jacobian-free Methods . 131
14.6 Concluding Remarks on NOX . 131

15 Partitioning and Load Balancing with Isorropia and Zoltan 133
15.1 Background . 133
15.2 Partitioning Methods . 134
15.3 Isorropia . 134
15.4 Zoltan . 135

16 Templated Distributed Linear Algebra Objects with Tpetra 137
16.1 Introduction . 137
16.2 A Basic Tpetra Code . 138
16.3 Spaces . 140
16.4 Creating and Using Vectors . 141
16.5 Creating and Using Matrices . 142
16.6 Conclusing Remarks . 144

6 Contents

1
Introduction
Marzio Sala, Michael Heroux, David Day, James Willenbring

1.1 Getting Started

The Trilinos framework uses a two level software structure that connects a system of pack-
ages. A Trilinos package is an integral unit, usually developed to solve a specific task, by
a (relatively) small group of experts. Packages exist beneath the Trilinos top level, which
provides a common look-and-feel. Each package has its own structure, documentation and
set of examples, and it is possibly available independently of Trilinos. However, each package
is even more valuable when combined with other Trilinos packages.

Trilinos is a large software project, and currently about fifty packages are included. The
entire set of packages covers a wide range of algorithms and enabling technologies for the
solution of large-scale, complex multi-physics engineering and scientific problems, as well as
a large set of utilities to improve the development of software for scientific computing.

Clearly, a full understanding all the functionalities of the Trilinos packages requires time.
Each package offers sophisticated features, difficult to “unleash” at a first sight. Besides that,
a detailed description of each Trilinos package is beyond the scope of this document. For
these reasons, the goal of this tutorial is to ensure that users have the background to make
good use of the extensive documentation contained in each package.

We will describe the following subset of the Trilinos packages.

• Epetra. The package defines the basic classes for distributed matrices and vectors,
linear operators and linear problems. Epetra classes are the common language spoken
by all the Trilinos packages (even if some packages can “speak” other languages). Each
Trilinos package accepts as input Epetra objects. This allows powerful combinations
among the various Trilinos functionalities.

• Triutils. This is a collection of utilities that are useful in software development. Here,
we present a command line parser and a matrix generator, that are used throughout
this document to define example matrices.

• AztecOO. This is a linear solver package based on preconditioned Krylov methods.
Aztec users will find that AztecOO supports all the Aztec interfaces and functionality,
and also provides significant new functionality.

• Belos. Provides next-generation iterative linear solvers and a powerful linear solver
developer framework.

7

8 Chapter 1. Introduction

• IFPACK. The package performs various incomplete factorizations, and is here used
with AztecOO.

• Teuchos. This is a collection of classes that can be essential for advanced code devel-
opment.

• ML. The algebraic multilevel and domain decomposition preconditioner package pro-
vides scalable preconditioning capabilities for a variety of problems. It is here used as
a preconditioner for AztecOO solvers.

• Amesos. The package provides a common interface to certain sparse direct linear
solvers (generally available outside the Trilinos framework), both sequential and parallel.

• Anasazi. The package provides a common interface to parallel eigenvalue and eigen-
vector solvers, for both symmetric and non-symmetric linear problems.

• NOX. This is a collection of nonlinear solvers, designed to be easily integrated into an
application and used with many different linear solvers.

• Zoltan. A toolkit of parallel services for dynamic, unstructured, and/or adaptive simu-
lations. Zoltan provides parallel dynamic load balancing and related services for a wide
variety of applications, including finite element methods, matrix operations, particle
methods, and crash simulations.

• Tpetra. Next-generation, templated version of Petra, taking advantage of the newer
advanced features of C++.

• Didasko. This package contains all the examples reported in this tutorial. The sources
of the examples can be found in the subdirectory
<your-trilinos-home>/packages/didasko/examples.

Table 1.1 gives a partial overview of what can be accomplished using Trilinos.

Remark 1. As already pointed out, Epetra objects are meant to be the “common language”
spoken by all the Trilinos packages, and are a natural starting point. For new users, Chapters
2-4 are a prerequisite to the later chapters. Chapters 6 is not essential to understand Trilinos,
but the functionalities there presented are used in this document as a starting point for many
examples. One of the classes described in Chapter 10, the Teuchos::ParameterList, is later
used in Chapters 11 and 12. Chapter 7 should be read before Chapters 9 and 11 (even if both
IFPACK and ML can be compiled and run without AztecOO).

The only prerequisites assumed in this tutorial are some familiarities with numerical meth-
ods for PDEs, and with iterative linear and nonlinear solvers. Although not strictly necessary,
the reader is assumed to have some familiarity with distributed memory computing and, to
a lesser extent, with MPI1.

Note that this tutorial is not a substitute for individual packages’ documentation. Also,
for an overview of all the Trilinos packages, the Trilinos philosophy, and a description of
the packages provided by Trilinos, the reader is referred to [HBH+03]. Developers should

1Although almost no explicit MPI instructions are required in a Trilinos code, the reader should be aware
of the basic concepts of message passing, like the definition of a communicator.

1.2. Installation 9

also consider the Trilinos Developers’ Guide, which addresses many topics, including the
development tools used by Trilinos’ developers, and a description of how to include a new
package.

1.2 Installation

To obtain Trilinos, please follow the instructions at the Trilinos download page:

http://trilinos.sandia.gov/download

Trilinos has been compiled on a variety of architectures, including various flavors of Linux,
Sun Solaris, SGI Irix, DEC, Mac OSX, IBM AIX, ASC Red Storm, and others. Trilinos has
been designed to support parallel applications. However, it also compiles and runs on serial
computers. An introduction to Trilinos and a list of FAQs may be found at the web pages:

http://trilinos.sandia.gov/getting_started.html
http://trilinos.sandia.gov/faq.html

After obtaining Trilinos, the next step is its compilation. Instructions for building Trilinos
are available online:

http://trilinos.sandia.gov/build_instructions.html

1.3 Copyright and Licensing of Trilinos

Trilinos is released under the Lesser GPL GNU Licence.
Trilinos is copyrighted by Sandia Corporation. Under the terms of Contract DE-AC04-

94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S.
Government. Export of this program may require a license from the United States Govern-
ment.

NOTICE: The United States Government is granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable worldwide license in ths data to reproduce, prepare
derivative works, and perform publicly and display publicly. Beginning five (5) years from July
25, 2001, the United States Government is granted for itself and others acting on its behalf
a paid-up, nonexclusive, irrevocable worldwide license in this data to reproduce, prepare
derivative works, distribute copies to the public, perform publicly and display publicly, and
to permit others to do so.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES DE-
PARTMENT OF ENERGY, NOR SANDIA CORPORATION, NOR ANY OF THEIR EM-
PLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS,
OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.

Some parts of Trilinos are dependent on a third party code. Each third party code comes
with its own copyright and/or licensing requirements. It is responsibility of the user to
understand these requirements.

10 Chapter 1. Introduction

1.4 Programming Language Used in this Tutorial

Trilinos is written in C++ (for most packages), and in C. Some interfaces are provided to
FORTRAN codes (mainly BLAS and LAPACK routines). Even if limited support is included
for C programs (and a more limited for FORTRAN code), to unleash the full power of Trilinos
we recommend C++. All the example programs contained in this tutorial are in C++; some
packages (like ML) contain examples in C.

1.5 Referencing Trilinos

The Trilinos project can be referenced by using the following BiBTeX citation information:

@techreport{Trilinos-Overview,
title = "{An Overview of Trilinos}",
author = "Michael Heroux and Roscoe Bartlett and Vicki Howle
Robert Hoekstra and Jonathan Hu and Tamara Kolda and
Richard Lehoucq and Kevin Long and Roger Pawlowski and
Eric Phipps and Andrew Salinger and Heidi Thornquist and
Ray Tuminaro and James Willenbring and Alan Williams ",
institution = "Sandia National Laboratories",
number = "SAND2003-2927",
year = 2003}

@techreport{Trilinos-Dev-Guide,
title = "{Trilinos Developers Guide}",
author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",
number = "SAND2003-1898",
year = 2003}

@techreport{Trilinos-Dev-Guide-II,
title = "{Trilinos Developers Guide Part II: ASCI Software Quality
Engineering Practices Version 1.0}",
author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",
number = "SAND2003-1899",
year = 2003}

@techreport{Trilinos-Users-Guide,
title = "{Trilinos Users Guide}",
author = "Michael A. Heroux and James M. Willenbring",
institution = "Sandia National Laboratories",
number = "SAND2003-2952",
year = 2003}

@techreport{Trilinos-Tutorial-5.0,
title = "{Trilinos Tutorial}",

1.6. A Note on the Directory Structure 11

author = "Marzio Sala and Michael A. Heroux and David M. Day",
institution = "Sandia National Laboratories",
number = "SAND2004-2189",
year = 2004}

The BiBTeX information is available at the web page

http://trilinos.sandia.gov/citing.html

1.6 A Note on the Directory Structure

Each Trilinos package in contained in the subdirectory

<your-trilinos-directory>/packages

Each package generally contains sources, examples, tests and documentation subdirectories:

<your-trilinos-directory>/packages/<package-name>/src
<your-trilinos-directory>/packages/<package-name>/examples
<your-trilinos-directory>/packages/<package-name>/test
<your-trilinos-directory>/packages/<package-name>/doc

Developers’ documentation is written using Doxygen2. The Doxygen documentation, and
other available documentation, for each package is available online via

http://trilinos.sandia.gov/packages/<package-name>/documentation.html

The Doxygen documentation can also be generated from the source code directly when
accessing a version-controlled copy of the Trilinos source code. For some packages, Doxygen
documentation can also be generated from the distribution tarball.

For example, to create the documentation for Epetra, use the following commands:

$ cd <your-trilinos-home>/packages/epetra/doc
$ doxygen

Generally, both HTML and LATEX documentation are created by Doxygen. The browser of
choice can be used to walk through the HTML documentation. To compile the LATEX sources,
the commands are:

$ cd <your-trilinos-home>/packages/epetra/doc/latex
$ make

1.7 List of Trilinos Developers

A list of past and present Trilinos developers is available online at:

http://trilinos.sandia.gov/team.html

2Copyright c©1997-2003 by Dimitri van Heesch. More information can by found at the web address
http://www.stack.nl/ dimitri/doxygen/.

12 Chapter 1. Introduction

Service provided/Task performed Package Tutorial

Advanced serial dense or sparse matrices: Epetra Chapter 3
Advanced utilities for Epetra vectors and sparse
matrices:

EpetraExt –

Templated distributed vectors and sparse matri-
ces:

Tpetra Chapter 16

Distributed sparse matrices: Epetra –
Solve a linear system with preconditioned
Krylov accelerators, CG, GMRES, Bi-CGSTAB,
TFQMR:

AztecOO, Be-
los

Chapters 7, 8

Incomplete Factorizations: AztecOO,
IFPACK

Chapter 9

Multilevel preconditioners: ML Chapter 11
“Black-box” smoothed aggregation precondi-
tioners:

ML Section 11.4

One-level Schwarz preconditioner (overlapping
domain decomposition):

AztecOO,
IFPACK

Chapter 9

Two-level Schwarz preconditioner, with coarse
matrix based on aggregation:

AztecOO+ML Section 11.5

Systems of nonlinear equations: NOX Chapter 14
Interface with various direct solvers, as UMF-
PACK, MUMPS, SuperLU DIST and ScaLA-
PACK :

Amesos Chapter 12

Eigenvalue problems for sparse matrices: Anasazi Chapter 13
Complex linear systems (using equivalent real
formulation):

Komplex? –

Segregated and block preconditioners (e.g., in-
compressible Navier-Stokes equations):

Meros? –

Light-weight interface to BLAS and LAPACK: Epetra Chapter 3
Templated interface to BLAS and LAPACK,
arbitrary-precision arithmetic, parameters’ list,
smart pointers:

Teuchos Section 10.5

Definition of abstract interfaces to vectors, lin-
ear operators, and solvers:

Thyra? –

Generation of test matrices Triutils Section 6.2

Table 1.1: Partial overview of intended uses of Trilinos. ?: not covered in this tutorial.

2
Working with Epetra Vectors
Marzio Sala, Michael Heroux, and David Day.

A vector is a fundamental data structure required by almost all numerical methods.
Within the Trilinos framework, vectors are usually constructed starting from Epetra
classes.
An Epetra vector may store either double-precision values (like the solution of a PDE
problem, the right-hand side of a linear system, or nodal coordinates), or integer data
values (such as a set of indexes or global IDs).
An Epetra vector may be either serial or distributed. Serial vectors are usually small, so
that it is not convenient to distribute them across the processes. Possibly, serial vectors
are replicated across the processes. On the other hand, distributed vectors tend to be
significantly larger, and therefore their elements are distributed across the processors.
In this latter case, users must specify the partition they intend to use. In Epetra, this
is done by specifying a communicator (introduced in Section 2.1) and an Epetra object
called map (introduced in Section 2.2). A map is basically a partitioning of a list of
global IDs.

During the Chapter, the user will be introduced to:

• The fundamental Epetra communicator object, Epetra Comm (in Section 2.1);

• The Epetra Map object (in Section 2.2);

• The creation and assembly of Epetra vectors (in Sections 2.3 and 2.4). The
sections also present common vector operations, such as dot products, fill with
constant or random values, vector scalings and norms;

• A tool to redistributing vectors across processes (in Section 2.5).

2.1 Epetra Communicator Objects

The Epetra Comm virtual class is an interface that encapsulates the general information and
services needed for the other Epetra classes to run on serial or parallel computer. An Epe-
tra Comm object is required for building all Epetra Map objects, which in turn are required
for all other Epetra classes.

Epetra Comm has two basic concrete implementations:

• Epetra SerialComm (for serial executions);

13

14 Chapter 2. Working with Epetra Vectors

• Epetra MpiComm (for MPI distributed memory executions).

For most basic applications, the user can create an Epetra Comm object using the follow-
ing code fragment:

#include "Epetra_ConfigDefs.h"
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
// .. other include files and others ...
int main(int argv, char *argv[]) {
// .. some declarations here ...
#ifdef HAVE_MPI
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

#else
Epetra_SerialComm Comm;

#endif
// ... other code follows ...

Note that the MPI_Init() call and the

#ifdef HAVE_MPI
MPI_Finalize();

#endif

call, are likely to be the only MPI calls users have to explicitly introduce in their code.
Most of Epetra Comm methods are similar to MPI functions. The class provides methods

such as MyPID(), NumProc(), Barrier(), Broadcast(), SumAll(), GatherAll(), MaxAll(),
MinAll(), ScanSum(). For instance, the number of processes in the communicator, NumProc,
and the ID of the calling process, MyPID, can be obtained by

int NumProc = Comm.NumProc();
int MyPID = Comm.MyPID();

The file didasko/examples/epetra/ex1.cpp presents the use of some of the above intro-
duced functions. For a description of the syntax, please refer to the Epetra Class Documen-
tation.

2.2 Defining a Map

The distribution of a set of integer labels (or elements) across the processes is here called a
map, and its actual implementation is given by the Epetra Map class (or, more precisely, by
an Epetra BlockMap, from which Epetra Map is derived). Basically, the class handles the
definition of the:

• global number of elements in the set (called NumGlobalElements);

2.2. Defining a Map 15

NumGlobaElementss()
The total number of elements across all processes.

NumMyElementss()
The number of elements on the calling process.

MinAllGID()
The minimum global index value across all processes.

MaxAllGID()
The maximum global index value across all processes.

MinMyGID()
The minimum global index value on the calling process.

MaxMyGID()
The maximum global index value on the calling process.

MinLID()
The minimum local index value on the calling process.

MaxLID()
The maximum local index value on the calling process.

LinearMap()
Returns true if the elements are distributed linearly across processes, i.e., process 0 gets
the first n/p elements, process 1 gets the next n/p elements, etc. where n is the number
of elements and p is the number of processes.

DistributedGlobal()
Returns true if the element space of the map spans more than one process. This will be
true in most cases, but will be false in serial cases and for objects that are created via the
derived Epetra LocalMap class.

Table 2.1: Some methods of the class Epetra Map

• local number of elements (called NumMyElements);

• global numbering of all local elements (an integer vector of size NumMyElements, called
MyGlobalElements).

There are three ways to define an map. The easiest way is to specify the global number
of elements, and let Epetra decide:

Epetra_Map Map(NumGlobalElements,0,Comm);

16 Chapter 2. Working with Epetra Vectors

In this case, the constructor takes the global dimension of the vector, the base index1, and an
Epetra_Comm object (introduced in Section 2.1). As a result, each process will be assigned a
contiguous set of elements.

A second way to build the Epetra Comm object is to furnish the local number of elements:

Epetra_Map Map(-1,NumMyElements,0,Comm);

This will create a vector of size
∑NumProc−1

i=0 NumMyElements. Each process will get a con-
tiguous set of elements. These two approached are coded in file
didasko/examples/epetra/ex2.cpp.

A third more involved way to create an Epetra Map, is to specify on each process both
the number of local elements, and the global indexing of each local element. To understand
this, consider the following code. A vector of global dimension 5 is split among processes p0
and p1. Process p0 owns elements 0 an 4, and process p1 elements 1, 2, and 3.

#include "Epetra_Map.h"
// ...
MyPID = Comm.MyPID();
switch(MyPID) {
case 0:
MyElements = 2;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 4;
break;

case 1:
MyElements = 3;
MyGlobalElements = new int[MyElements];
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;
break;

}

Epetra_Map Map(-1,MyElements,MyGlobalElements,0,Comm);

The complete code is reported in didasko/examples/epetra/ex3.cpp.
Once created, a Map object can be queried for the global and local number of elements,

using

int NumGlobalElements = Map.NumGlobalElements();
int NumMyElements = Map.NumMyElements();

and for the global ID of local elements, using

int * MyGlobalElements = Map.MyGlobalElements();

1The index base is the index of the lowest order element, and is usually, 0 for C or C++ arrays, and 1

for FORTRAN arrays. Epetra can indeed accept any number as index base. However, some other Trilinos
package may require a C-style index base.

2.3. Creating and Assembling Serial Vectors 17

that returns a pointer to the internally stored global indexing vector, or, equivalently,

int MyGlobalElements[NumMyElements];
Map.MyGlobalElements(MyGlobalElements);

that copies in the user’s provided array the global indexing.

The class Epetra Map is derived from Epetra BlockMap. The class keeps information that
describes the distribution of objects that have block elements (for example, one or more con-
tiguous entries of a vector). This situation is common in applications like multiple-unknown
PDE problems. A variety of constructors are available for the class. An example of the use
of block maps is reported in didasko/examples/epetra/ex23.cpp.

Note that different maps may coexist in the same part of the code. The user may de-
fine vectors with different distributions (even for vectors of the same size). Two classes are
provided to transfer data from one map to an other: Epetra Import and Epetra Export (see
Section 2.5).

Remark 2. Most Epetra objects overload the << operator. For example, to visualize infor-
mation about the Map, one can simply write

cout << Map;

We have constructed very basic map objects. More general objects can be constructed as
well. First, element numbers are only labels, and they do not have to be consecutive. This
means that we can define a map with elements 1, 100 and 10000 on process 0, and elements
2, 200 and 20000 on process 1. This map, composed by 6 elements, is perfectly legal. Second,
each element can be assigned to more than one process. Examples
didasko/examples/epetra/ex20.cpp and
didasko/examples/epetra/ex21.cpp can be used to better understand the potential of Epe-
tra Maps.

Remark 3. The use of “distributed directory” technology facilitates arbitrary global ID sup-
port.

2.3 Creating and Assembling Serial Vectors

Within Epetra, it is possible to define sequential vectors for serial and parallel platforms. A
sequential vector is a vector which, in the opinion of the programmer, does not need to be
partitioned among the processes. Note that each process defines its own sequential vectors,
and that changing an element of this vector on this process will not directly affect the vectors
stored on other processes (if any have been defined).

The class Epetra SerialDenseVector enables the construction and use of real-valued, dou-
ble precision dense vectors. The Epetra SerialDenseVector class provides convenient vector
notation but derives all significant functionality from Epetra SerialDenseMatrix class (see Sec-
tion 3.1). The following instruction creates a sequential double-precision vector containing
Length elements:

#include "Epetra_SerialDenseVector.h"
Epetra_SerialDenseVector DoubleVector(Length);

18 Chapter 2. Working with Epetra Vectors

Other constructors are available, as described in the Epetra Class Documentation. Integer
vectors can be created as

#include "Epetra_IntSerialDenseVector.h"
Epetra_SerialIntDenseVector IntVector(Length);

We recomment Epetra SerialDenseVector and Epetra SerialIntDenseVector instead of more
common C++ allocations (using new), because Epetra serial vectors automatically delete the
allocated memory when destructed, avoiding possible memory leaks.

The vector can be filled using the [] or () operators. Both methods return a reference
to the specified element of the vector. However, using (), bound checking is enforced. Using
using [], no bounds checking is done unless Epetra is compiled with
EPETRA_ARRAY_BOUNDS_CHECK.

Remark 4. To construct replicated Epetra objects on distributed memory machines, the user
may consider the class Epetra LocalMap. The class constructs the replicated local objects and
keeps information that describe the distribution.

The file didasko/examples/epetra/ex4.cpp illustrates basic operations on dense vectors.

2.4 Creating and Assembling a Distributed Vector

A distributed object is an entity whose elements are partitioned across more than one process.
Epetra’s distributed objects (derived from the Epetra DistObject class) are created from a
Map. For example, a distributed vector can be constructed starting from an Epetra Map (or
Epetra BlockMap) with an instruction of type

Epetra_Vector x(Map);

(We shall see that this dependency on Map objects holds for all distributed Epetra objects.)
This constructor allocates space for the vector and sets all the elements to zero. A copy
constructor may be used as well:

Epetra_Vector y(x);

A variety of sophisticated constructors are indeed available. For instance, the user can pass
a pointer to an array of double precision values,

Epetra_Vector x(Copy,Map,LocalValues);

Note the word Copy is input to the constructor. It specifies the Epetra CopyMode, and refers
to many Epetra objects. In fact, Epetra allows two data access modes:

1. Copy: allocate memory and copy the user-provided data. In this mode, the user data is
not needed be the new Epetra Vector after construction;

2. View: create a “view” of the user’s data. The user data is assumed to remain untouched
for the life of the vector (or modified carefully). From a data hiding perspective, View
mode is very dangerous. But is is often the only way to get the required performance.
Therefore, users are strongly encouraged to develop code using the Copy mode. Only use
View mode as needed in a secondary performance optimization phase. To use the View
mode, the user has to define the vector entries using a (double) vector (of appropriate
size), than construct an Epetra Vector with an instruction of type

2.4. Creating and Assembling a Distributed Vector 19

Epetra_Vector z(View,Map,z_values);

where z_values is a pointer a double array containing the values for z.

To set a locally owned element of a vector, ont can use the [] operator, regardless of how
a vector has been created. For example,

x[i] = 1.0*i;

where i is in the local index space.
Epetra also defines some functions to set vector elements in local or global index space.

ReplaceMyValues or SumIntoMyValues will replace or sum values into a vector with a given
indexed list of values, with indexes in the local index space; ReplaceGlobalValues or
SumIntoGlobalValues will replace or sum values into a vector with a given indexed list of
values in the global index space (but locally owned). It is important to note that no process
may set vector entries locally owned by another process. In other words, both global and
local insert and replace functions refer to the part of a vector assigned to the calling process.
Intra-process communications can be (easily) performed using Import and Export objects,
covered in Section 2.5.

The user might need (for example, for reasons of computational efficiency) to work on
Epetra Vectors as if they were double * pointers. File
didasko/examples/epetra/ex5.cpp
shows the use of ExtractCopy(). ExtractCopy does not give access to the vector elements,
but only copies them into the user-provided array. The user must commit those changes to
the vector object, using, for instance, ReplaceMyValues.

A further computationally efficient way, is to extract a “view” of the (multi-)vector internal
data. This can be done as follows, using method ExtractView(). Let z be an Epetra Vector.

double * z_values;
z.ExtractView(&z_values);
for(int i=0 ; i<MyLength ; ++i) z_values[i] *= 10;

In this way, modifying the values of z_values will affect the internal data of the Epetra Vector
z. An example of the use of ExtractView is reported in file
didasko/examples/epetra/ex6.cpp.

Remark 5. The class Epetra Vector is derived from Epetra MultiVector. Roughly speaking, a
multi-vector is a collection of one or more vectors, all having the same length and distribution.
File didasko/examples/epetra/ex7.cpp illustrates use of multi-vectors.

The user can also consider the function ResetView, which allows a (very) light-weight
replacement of multi-vector values, created using the Epetra DataMode View. Note that no
checking is performed to see if the values passed in contain valid data. This method can be
extremely useful in the situation where a vector is needed for use with an Epetra operator
or matrix, and the user is not passing in a multi-vector. Use this method with caution as it
could be extremely dangerous. A simple example is reported in
didasko/examples/epetra/ex8.cpp

It is possible to perform a certain number of operations on vector objects. Some of them
are reported in Table 2.2. Example didasko/examples/epetra/ex18.cpp works with some
of the functions reported in the table.

20 Chapter 2. Working with Epetra Vectors

int NumMyELements()
returns the local vector length on the calling processor

int NumGlobalElements()
returns the global length

int Norm1(double *Result) const
returns the 1-norm (defined as

∑n
i |xi| (see also Norm2 and NormInf)

Normweigthed(double *Result) const

returns the 2-norm, defined as
√

1
n

∑n
j=1(wjxj)2)

int Dot(const Epetra MultiVector A, double *Result) const
computes the dot product of each corresponding pair of vectors

int Scale(double ScalarA, const Epetra MultiVector &A
Replace multi-vector values with scaled values of A, this=ScalarA*A

int MinValue(double *Result) const
compute minimum value of each vector in multi-vector (see also MaxValue and MeanValue)

int PutScalar(double Scalar)
Initialize all values in a multi-vector with constant value

int Random()
set multi-vector values to random numbers

Table 2.2: Some methods of the class Epetra Vector

2.5 Epetra Import and Epetra Export classes

The Epetra Import and Epetra Export classes apply off-processor communication. Epe-
tra Import and Epetra Export are used to construct a communication plan that can be called
repeatedly by computational classes such the Epetra multi-vectors of the Epetra matrices.

Currently, those classes have one constructor, taking two Epetra Map (or Epetra BlockMap)
objects. The first map specifies the global IDs that are owned by the calling processor. The
second map specifies the global IDs of elements that we want to import later.

Using an Epetra Import object means that the calling process knows what it wants to
receive, while an Epetra Export object means that it knows what it wants to send. An
Epetra Import object can be used to do an Export as a reverse operation (and equivalently
an Epetra Export can be used to do an Import). In the particular case of bijective maps,
either Epetra Import or Epetra Export is appropriate.

To better illustrate the use of these two classes, we present the following example. Suppose
that the double-precision distributed vector x of global length 4, is distributed over two
processes. Process 0 own elements 0,1,2, while process 1 owns elements 1,2,3. This means

2.5. Epetra Import and Epetra Export classes 21

that elements 1 and 2 are replicated over the two processes. Suppose that we want to bring all
the components of x to process 0, summing up the contributions of elements 1 and 2 from the
2 processes. This is done in the following example (c.f. didasko/examples/epetra/ex9.cpp).

int NumGlobalElements = 4; // global dimension of the problem

int NumMyElements; // local elements
Epetra_IntSerialDenseVector MyGlobalElements;

if(Comm.MyPID() == 0) {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 1;
MyGlobalElements[2] = 2;

} else {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;

}

// create a double-precision map
Epetra_Map Map(-1,MyGlobalElements.Length(),

MyGlobalElements.Values(),0, Comm);

// create a vector based on map
Epetra_Vector x(Map);
for(int i=0 ; i<NumMyElements ; ++i)
x[i] = 10*(Comm.MyPID()+1);

cout << x;

// create a target map, in which all the elements are on proc 0
int NumMyElements_target;

if(Comm.MyPID() == 0)
NumMyElements_target = NumGlobalElements;

else
NumMyElements_target = 0;

Epetra_Map TargetMap(-1,NumMyElements_target,0,Comm);

Epetra_Export Exporter(Map,TargetMap);

// work on vectors
Epetra_Vector y(TargetMap);

22 Chapter 2. Working with Epetra Vectors

y.Export(x,Exporter,Add);
cout << y;

Running this code with 2 processors, the output will be approximatively the following:

[msala:epetra]> mpirun -np 2 ./ex31.exe
Epetra::Vector

MyPID GID Value
0 0 10
0 1 10
0 2 10

Epetra::Vector
1 1 20
1 2 20
1 3 20

Epetra::Vector
Epetra::Vector

MyPID GID Value
0 0 10
0 1 30
0 2 30
0 3 20

3
Working with Epetra Matrices
Marzio Sala, Michael Heroux, David Day

Epetra contains several matrix classes. Epetra matrices can be defined to be either serial
or distributed. A serial matrix could be the matrix corresponding to a given element in a
finite-element discretization, or the Hessemberg matrix in the GMRES method. Those
matrices are of (relatively) small size, so that it is not convenient to distribute them
across the processes.
Other matrices, e.g. the linear system matrices, must be distributed to obtain scalability.
For distributed sparse matrices, the basic Epetra class is Epetra RowMatrix, meant for
double-precision matrices with row access. Epetra RowMatrix is a pure virtual class.
The classes that are derived from Epetra_RowMatrix include:

• Epetra_CrsMatrix for point matrices;

• Epetra_VbrMatrix for block matrices (that is, for matrices which have a block
structure, for example the ones deriving from the discretization of a PDE problem
with multiple unknowns for node);

• Epetra_FECrsMatrix and Epetra_FEVbrMatrix for matrices arising from FE
discretizations.

The purpose of the Chapter is to review the allocation and assembling of different types
of matrices as follows:

• The creation of (serial) dense matrices (in Section 3.1);

• The creation of sparse point matrices (in Section 3.2);

• The creation of sparse block matrices (in Section 3.3);

• The insertion of non-local elements using finite-element matrices (in Section 3.4).

3.1 Serial Dense Matrices

Epetra supports sequential dense matrices with the class Epetra SerialDenseMatrix. A pos-
sible way to create a serial dense matrix D of dimension n by m is

#include "Epetra_SerialDenseMatrix.h"
Epetra_SerialDenseMatrix D(n,m);

23

24 Chapter 3. Working with Epetra Matrices

One could also create a zero-size object,

Epetra_SerialDenseMatrix D();

and then shape this object:

D.Shape(n,m);

(D could be reshaped using ReShape().)
An Epetra SerialDenseMatrix is stored in a column-major order in the usual FORTRAN

style. This class is built on the top of the BLAS library, and is derived from Epetra Blas (not
covered in this tutorial). Epetra SerialDenseMatrix supports dense rectangular matrices.

To access the matrix element at the i-th row and the j-th column, it is possible to use
the parenthesis operator (A(i,j)), or the bracket operator (A[j][i], note that i and j are
reversed)1.

As an example of the use of this class, in the following code we consider a matrix-matrix
product between two rectangular matrices A and B.

int NumRowsA = 2, NumColsA = 2;
int NumRowsB = 2, NumColsB = 1;
Epetra_SerialDenseMatrix A, B;
A.Shape(NumRowsA, NumColsA);
B.Shape(NumRowsB, NumColsB);
// ... here set the elements of A and B
Epetra_SerialDenseMatrix AtimesB;
AtimesB.Shape(NumRowsA,NumColsB);
double alpha = 1.0, beta = 1.0;
AtimesB.Multiply(’N’,’N’,alpha, A, B, beta);
cout << AtimesB;

Multiply() performs the operation C = αA + βB, where A replaced by AT if the first input
parameter is T, and B replaced by BT if the second input parameter is T. The corresponding
source code file is didasko/examples/epetra/ex10.cpp.

To solve a linear system with a dense matrix, one has to create an Epetra SerialDenseSolver.
This class uses the most robust techniques available in the LAPACK library. The class is
built on the top of BLAS and LAPACK, and thus has excellent performance and numerical
stability2.

Another class, Epetra LAPACK, provides a “thin” layer on top of LAPACK, while Epe-
tra SerialDenseSolver attempts to provide easy access to the more robust dense linear solvers.

Epetra LAPACK is preferable if the user seeks a convenient wrapper around the FOR-
TRAN LAPACK routines, and the problem at hand is well-conditioned. Instead, when the
user wants (or potentially wants to) solve ill-conditioned problems or favors a more object-
oriented interface, then we suggest Epetra SerialDenseMatrix..

Given an Epetra SerialDenseMatrix and two Epetra SerialDenseVectors x and b, the gen-
eral approach is as follows:

1The bracket approach is in general faster, as the compiler can inline the corresponding function. Instead,
some compiler have problems to inline the parenthesis operator.

2Another package, Teuchos, covered in Chapter 10, allows a templated access to LAPACK. ScaLAPACK
is supported through Amesos, see Chapter 12.

3.2. Distributed Sparse Matrices 25

Epetra_SerialDenseSolver Solver();
Solver.SetMatrix(D);
Solver.SetVectors(x,b);

Then, it is possible to invert the matrix with Invert(), solve the linear system with Solve(),
apply iterative refinement with ApplyRefinement(). Other methods are available; for in-
stance,

double rcond=Solve.RCOND();

returns the reciprocal of the condition number of matrix D (or -1 if not computed).
didasko/examples/epetra/ex11.cpp outlines some of the capabilities of the

Epetra SerialDenseSolver class.

3.2 Distributed Sparse Matrices

Epetra provides an extensive set of classes to create and fill distributed sparse matrices.
These classes allow row-by-row or element-by-element constructions. Support is provided
for common matrix operations, including scaling, norm, matrix-vector multiplication and
matrix-multivector multiplication3.

Using Epetra objects, applications do not need to know about the particular storage
format, and other implementation details such as data layout, the number and location of
ghost nodes. Epetra furnishes two basic formats, one suited for point matrices, the other for
block matrices. The former is presented in this Section; the latter is introduced in Section 3.3.
Other matrix formats can be introduced by deriving the Epetra RowMatrix virtual class as
needed.

Remark 6. Some numerical algorithms require the application of the linear operator only.
For this reason, some applications choose not to store a given matrix. Epetra can handle this
situation using with the Epetra Operator class; see Section 4.3.

Creating a sparse matrix may be more complicated than creating a dense matrix. It is
worthwhile to take steps to avoid unnecessary dynamic memory activities due to uncertainty
in the number of elements in each row.

As a general rule, the process of constructing a (distributed) sparse matrix is as follows:

• allocate an integer array Nnz, whose length equals the number of local rows;

• loop over the local rows, and estimate the number of nonzero elements of that row;

• create the sparse matrix using Nnz;

• fill the sparse matrix.

3Methods for matrix-matrix products are available through the EpetraExt package. Another alternative is
to use the efficient matrix-matrix product of ML, which requires ML Operator objects. One may use light-
weight conversions to ML Operator, perform the ML matrix-matrix product, then convert the result to Epetra
Matrix.

26 Chapter 3. Working with Epetra Matrices

virtual int Multiply (bool TransA, const Epetra MultiVector &X,
Epetra MultiVector &Y) const=0
Returns the result of a Epetra RowMatrix multiplied by a Epetra MultiVector X in Y.

virtual int Solve (bool Upper, bool Trans, bool UnitDiagonal, const
Epetra MultiVector &X, Epetra MultiVector &Y) const=0
Returns result of a local-only solve using a triangular Epetra RowMatrix with Epe-
tra MultiVectors X and Y.

virtual int InvRowSums (Epetra Vector &x) const=0
Computes the sum of absolute values of the rows of the Epetra RowMatrix, results re-
turned in x.

virtual int LeftScale (const Epetra Vector &x)=0
Scales the Epetra RowMatrix on the left with a Epetra Vector x.

virtual int InvColSums (Epetra Vector &x) const=0
Computes the sum of absolute values of the cols of the Epetra RowMatrix, results returned
in x.

virtual int RightScale (const Epetra Vector &x)=0
Scales the Epetra RowMatrix on the right with a Epetra Vector x.

Table 3.1: Mathematical methods of Epetra RowMatrix

As an example, in this Section we will present how to construct a distributed (sparse)
matrix, arising from a finite-difference solution of a one-dimensional Laplace problem. This
matrix looks like:

A =


2 −1
−1 2 −1

. −1
−1 2

 .

The example illustrates how to construct the matrix, and how to perform matrix-vector
operations. The code can be found in didasko/examples/epetra/ex12.cpp.

We start by specifying the global dimension (here is 5, but can be any number):

int NumGlobalElements = 5;

We create a map (for the sake of simplicity linear), and define the local number of rows and
the global numbering for each local row:

Epetra_Map Map(NumGlobalElements,0,Comm);
int NumMyElements = Map.NumMyElements();
int * MyGlobalElements = Map.MyGlobalElements();

In particular, we have that j=MyGlobalElements[i] is the global numbering for local node
i. Then, we have to specify the number of nonzeros per row. In general, this can be done in
two ways:

3.2. Distributed Sparse Matrices 27

virtual bool Filled () const=0
If FillComplete() has been called, this query returns true, otherwise it returns false.
virtual double NormInf () const=0
Returns the infinity norm of the global matrix.
virtual double NormOne () const=0
Returns the one norm of the global matrix.
virtual int NumGlobalNonzeros () const=0
Returns the number of nonzero entries in the global matrix.
virtual int NumGlobalRows () const=0
Returns the number of global matrix rows.
virtual int NumGlobalCols () const=0
Returns the number of global matrix columns.
virtual int NumGlobalDiagonals () const=0
Returns the number of global nonzero diagonal entries, based on global row/column index
comparisons.
virtual int NumMyNonzeros () const=0
Returns the number of nonzero entries in the calling processor’s portion of the matrix.
virtual int NumMyRows () const=0
Returns the number of matrix rows owned by the calling processor.
virtual int NumMyCols () const=0
Returns the number of matrix columns owned by the calling processor.
virtual int NumMyDiagonals () const=0
Returns the number of local nonzero diagonal entries, based on global row/column index
comparisons.
virtual bool LowerTriangular () const=0
If matrix is lower triangular in local index space, this query returns true, otherwise it
returns false.
virtual bool UpperTriangular () const=0
If matrix is upper triangular in local index space, this query returns true, otherwise it
returns false.
virtual const Epetra Map & RowMatrixRowMap () const=0
Returns the Epetra Map object associated with the rows of this matrix.
virtual const Epetra Map & RowMatrixColMap () const=0
Returns the Epetra Map object associated with the columns of this matrix.
virtual const Epetra Import * RowMatrixImporter () const=0
Returns the Epetra Import object that contains the import operations for distributed
operations.

Table 3.2: Attribute access methods of Epetra RowMatrix

28 Chapter 3. Working with Epetra Matrices

• Furnish an integer value, representing the number of nonzero element on each row (the
same value for all the rows);

• Furnish an integer vector NumNz, of length NumMyElements(), containing the nonzero
elements of each row.

The first approach is trivial: the matrix is created with the simple instruction

Epetra_CrsMatrix A(Copy,Map,3);

(The Copy keyword is explained in Section 2.4.) In this case, Epetra considers the number 3
as a “suggestion,” in the sense that the user can still add more than 3 elements per row (at
the price of a possible performance decay). The second approach is as follows:

int * NumNz = new int[NumMyElements];
for(int i=0 ; i<NumMyElements ; i++)
if(MyGlobalElements[i]==0 ||

MyGlobalElements[i] == NumGlobalElements-1)
NumNz[i] = 2;

else
NumNz[i] = 3;

We are building a tridiagonal matrix where each row has (-1 2 -1). Here NumNz[i] is the
number of nonzero terms in the i-th global equation on this process (2 off-diagonal terms,
except for the first and last equation).

Now, the command to create an Epetra CsrMatrix is

Epetra_CrsMatrix A(Copy,Map,NumNz);

We add rows one at a time. The matrix A has been created in Copy mode, in a way that relies
on the specified map. To fill its values, we need some additional variables: let us call them
Indexes and Values. For each row, Indices contains global column indices, and Values the
correspondingly values.

double * Values = new double[2];
Values[0] = -1.0; Values[1] = -1.0;
int * Indices = new int[2];
double two = 2.0;
int NumEntries;

for(int i=0 ; i<NumMyElements; ++i) {
if (MyGlobalElements[i]==0) {

Indices[0] = 1;
NumEntries = 1;

} else if (MyGlobalElements[i] == NumGlobalElements-1) {
Indices[0] = NumGlobalElements-2;
NumEntries = 1;

} else {
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;

3.2. Distributed Sparse Matrices 29

NumEntries = 2;
}
A.InsertGlobalValues(MyGlobalElements[i], NumEntries,

Values, Indices);
// Put in the diagonal entry
A.InsertGlobalValues(MyGlobalElements[i], 1, &two,

MyGlobalElements+i);
}

Note that column indices have been inserted using global indices (but a method called
InsertMyValues can be used as well) . Finally, we transform the matrix representation
into one based on local indexes. The transformation in required in order to perform efficient
parallel matrix-vector products and other matrix operations.

A.FillComplete();

This call to FillComplete() will reorganize the internally stored data so that each process
knows the set of internal, border and external elements for a matrix-vector product of the
form B = AX. Also, the communication pattern is established. As we have specified just
one map, Epetra considers that the the rows of A are distributed among the processes in the
same way of the elements of X and B. Although standard, this approach is only a particular
case. Epetra allows the user to handle the more general case of a matrix whose Map differs
from that of X and that of B. In fact, each Epetra matrix is defined by four maps:

• Two maps, called RowMap and ColumnMap, define the sets of rows and columns of the
elements assigned to a given processor. In general, one processor cannot set elements
assigned to other processors4. RowMap and ColumnMap define the pattern of the
matrix, as it is used during the construction. They can be obtained using the methods
RowMatrixRowMap() and RowMatrixColMap() of the Epetra RowMatrix class. Usually,
as a ColumnMap is not specified, it is automatically created by Epetra. In general
RowMap and ColumnMap can differ.

• DomainMap and RangeMap define, instead, the parallel data layout of X and B, re-
spectively. Note that those two maps can be completely different from RowMap and
ColumnMap, meaning that a matrix can be constructed using a certain data distribu-
tion, then used on vectors with another data distribution. DomainMap and RangeMap
can differ. Maps can be obtained using the methods DomainMap() and RangeMap().

The potential of the approach are illustated by the example file
didasko/examples/epetra/ex24.cpp. In this example, to be run using two processors, we
build two maps: MapA will be used to construct the matrix, while MapB to define the parallel
layout of the vectors X and B. For the sake of simplicity, A is diagonal.

Epetra_CrsMatrix A(Copy,MapA,MapA,1);

As usual in this Tutorial, the integer vector MyGlobalElementsA contains the global ID of
local nodes. To assemble A, we cycle over all the local rows (defined by MapA):

4Some classes, derived from the Epetra RowMatrix, can perform data exchange; see for instance Epe-
tra FECrsMatrix or Epetra FEVbrMatrix.

30 Chapter 3. Working with Epetra Matrices

for(int i=0 ; i<NumElementsA ; ++i) {
double one = 2.0;
int indices = MyGlobalElementsA[i];
A.InsertGlobalValues(MyGlobalElementsA[i], 1, &one, &indices);

}

Now, as both X and B are defined using MapB, instead of calling FillComplete(), invoke

A.FillComplete(MapB,MapB);

Now, we can create X and B as vectors based on MapB, and perform the matrix-vector product:

Epetra_Vector X(MapB); Epetra_Vector B(MapB);
A.Multiply(false,X,B);

Remark 7. Although presented for Epetra CrsMatrix objects, the distinction between RowMap,
ColMap, DomainMap, and RangeMap holds for all classed derived from Epetra RowMatrix.

Example didasko/examples/epetra/ex14.cpp shows the use of some of the methods
of the Epetra CrsMatrix class. The code prints out information about the structure of the
matrix and its properties. The output will be approximatively as reported here:

[msala:epetra]> mpirun -np 2 ./ex14
*** general Information about the matrix
Number of Global Rows = 5
Number of Global Cols = 5
is the matrix square = yes
||A||_\infty = 4
||A||_1 = 4
||A||_F = 5.2915
Number of nonzero diagonal entries = 5(100 %)
Nonzero per row : min = 2 average = 2.6 max = 3
Maximum number of nonzero elements/row = 3
min(a_{i,j}) = -1
max(a_{i,j}) = 2
min(abs(a_{i,j})) = 1
max(abs(a_{i,j})) = 2
Number of diagonal dominant rows = 2 (40 % of total)
Number of weakly diagonal dominant rows = 3 (60 % of total)
*** Information about the Trilinos storage
Base Index = 0
is storage optimized = no
are indices global = no
is matrix lower triangular = no
is matrix upper triangular = no
are there diagonal entries = yes
is matrix sorted = yes

Other examples for Epetra CrsMatrix include:

3.3. Creating Block Matrices 31

• Example didasko/examples/epetra/ex13.cpp implements a simple distributed finite-
element solver. The code solves a 2D Laplace problem with unstructured triangular
grids. In this example, the information about the grid is hardwired. The interested
user can easily modify those lines in order to read the grid information from a file.

• Example didasko/examples/epetra/ex15.cpp explains how to export an Epetra CrsMatrix
to file in a MATLAB format. The output of this example will be approximatively as
follows:

[msala:epetra]> mpirun -np 2 ./ex15
A = spalloc(5,5,13);
% On proc 0: 3 rows and 8 nonzeros
A(1,1) = 2;
A(1,2) = -1;
A(2,1) = -1;
A(2,2) = 2;
A(2,3) = -1;
A(3,2) = -1;
A(3,3) = 2;
A(3,4) = -1;
% On proc 1: 2 rows and 5 nonzeros
A(4,4) = 2;
A(4,5) = -1;
A(4,3) = -1;
A(5,4) = -1;
A(5,5) = 2;

A companion to this example is
didasko/examples/epetra/ex16.cpp, which exports an Epetra Vector to MATLAB
format. Note also that the package EpetraExt contains several purpose tools to read
and write matrices in various formats.

3.3 Creating Block Matrices

This section reviews how to work with block matrices (where each block is a dense matrix)5.
This format has been designed for PDE problems with more than one unknown per grid node.
The resulting matrix has a sparse block structure, and the size of each dense block equals
the number of PDE equations defined on that block. This format is quite general, and can
handle matrices with variable block size, as is done is the following example.

First, we create a map, containing the distribution of the blocks:

Epetra_Map Map(NumGlobalElements,0,Comm);

Here, a linear decomposition is used for the sake of simplicity, but any map may be used as
well. Now, we obtain some information about the map:

5Trilinos offers capabilities to deal with matrices composed by few sparse blocks, like for instance matrices
arising from the discretization of the incompressible Navier-Stokes equations, through the Meros package (not
covered in this tutorial).

32 Chapter 3. Working with Epetra Matrices

// local number of elements
int NumMyElements = Map.NumMyElements();
// global numbering of local elements
int * MyGlobalElements = new int [NumMyElements];
Map.MyGlobalElements(MyGlobalElements);

A block matrix can have blocks of different size. Here, we suppose that the dimension of
diagonal block row i is i+1. The integer vector ElementSizeList will contain the block size
of local element i.

Epetra_IntSerialDenseVector ElementSizeList(NumMyElements);
for(int i=0 ; i<NumMyElements ; ++i)
ElementSizeList[i] = 1+MyGlobalElements[i];

Here ElementSizeList is declared as Epetra IntSerialDenseVector, but an int array is fine
as well.

Now we can create a map for the block distribution:

Epetra_BlockMap BlockMap(NumGlobalElements,NumMyElements,
MyGlobalElements,
ElementSizeList.Values(),0,Comm);

and finally we can create the VBR matrix based on BlockMap. In this case, nonzero elements
are located in the diagonal and the sub-diagonal above the diagonal.

Epetra_VbrMatrix A(Copy, BlockMap, 2);

int Indices[2];
double Values[MaxBlockSize];

for(int i=0 ; i<NumMyElements ; ++i) {
int GlobalNode = MyGlobalElements[i];
Indices[0] = GlobalNode;
int NumEntries = 1;
if(GlobalNode != NumGlobalElements-1) {
Indices[1] = GlobalNode+1;
NumEntries++;

}
A.BeginInsertGlobalValues(GlobalNode, NumEntries, Indices);
// insert diagonal
int BlockRows = ElementSizeList[i];
for(int k=0 ; k<BlockRows * BlockRows ; ++k)
Values[k] = 1.0*i;

B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockRows);

// insert off diagonal if any
if(GlobalNode != NumGlobalElements-1) {
int BlockCols = ElementSizeList[i+1];
for(int k=0 ; k<BlockRows * BlockCols ; ++k)

3.4. Insert non-local Elements Using FE Matrices 33

Values[k] = 1.0*i;
B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockCols);

}
B.EndSubmitEntries();

}

Note that, with VBR matrices, we have to insert one block at time. This required two
more instructions, one to start this process (BeginInsertGlobalValues), and another one to
commit the end of submissions (EndSubmitEntries). Similar functions to sum and replace
elements exist as well.

Please refer to didasko/examples/epetra/ex17.cpp for the entire source.

3.4 Insert non-local Elements Using FE Matrices

The most important additional feature provided by the Epetra FECrsMatrix with respect to
Epetra CrsMatrix, is the capability to set non-local matrix elements. We will illustrate this
using the following example, reported in
didasko/examples/epetra/ex23.cpp. In the example, we will set all the entries of a dis-
tributed matrix from process 0. For the sake of simplicity, this matrix is diagonal, but more
complex cases can be handled as well.

First, we define the Epetra FECrsMatrix in Copy mode as

Epetra_FECrsMatrix A(Copy,Map,1);

Now, we will set all the diagonal entries from process 0:

if(Comm.MyPID() == 0) {
for(int i=0 ; i<NumGlobalElements ; ++i) {
int indices[2];
indices[0] = i; indices[1] = i;
double value = 1.0*i;
A.SumIntoGlobalValues(1,indices,&value);

}
}

The Function SumIntoGlobalValues adds the coefficients specified in indices (as pair row-
column) to the matrix, adding them to any coefficient that may exist at the specified location.
In a finite element code, the user will probably insert more than one coefficient at time
(typically, all the matrix entries corresponding to an elemental matrix).

Next, we need to exchange data, to that each matrix element not owned by process 0 could
be send to the owner, as specified by Map. This is accomplished by calling, on all processes,

A.GlobalAssemble();

A simple

cout << A;

can be used to verify the data exchange.

34 Chapter 3. Working with Epetra Matrices

4
Other Epetra Classes
Marzio Sala, Michael Heroux, David Day

Epetra includes classes that facilitate the development of parallel codes. In this Chapter
we will recall the main usage of some of those classes:

• Epetra Time (in Section 4.1);

• Epetra Flops (in Section 4.2).

• Epetra Operator and Epetra RowMatrix (in Section 4.3);

• Epetra LinearProblem (in Section 4.4).

4.1 Epetra Time

Retrieving elapsed and wall-clock time is problematic due to platform-dependent and language-
dependent issues. To avoid those problems, Epetra furnishes the Epetra Time class. Epe-
tra Time is meant to insulate the user from the specifics of timing among a variety of plat-
forms. Using Epetra Time, it is possible to measure the elapsed time. This is the time elapsed
between two phases of a program.

An Epetra Time object is defined as

Epetra_Time time(Comm);

(Comm being an Epetra Comm object, see Section 2.1.) To compute the elapsed time required
by a given piece of code, then user should put the instruction

time.ResetStartTime();

before the code to be timed. ElapsedTime() returns the elapsed time from the creation of
this object or from the last call to ResetStartTime().

4.2 Epetra Flops

The Epetra Flops class provides basic support and consistent interfaces for counting and
reporting floating point operations performed in the Epetra computational classes. All classes
based on the Epetra CompObject can count flops by the user creating an Epetra Flops object
and calling the SetFlopCounter() method for an Epetra CompObject.

As an example, suppose you are interested in counting the flops required by a vector-vector
product (between, say, x and y). The first step is to create an instance of the class:

35

36 Chapter 4. Other Epetra Classes

Epetra_Flops counter();

Then, it is necessary to “hook” the counter object to the desired computational object, in
the following way:

x.SetFlopCounter(counter);
y.SetFlopCounter(counter);

Then, perform the desired computations on Epetra objects, like

x.Dot(y,&dotProduct);

Finally, extract the number of performed operations and stored it in the double variable
total_flops as

total_flops = counter.Flops();

This returns the total number of serial flops, and then resets the flop counter to zero.
Epetra Time objects can be used in conjunction with Epetra Flops objects to estimate

the number of floating point operations per second of a given code (or a part of it). One can
proceed as here reported:

Epetra_Flops counter;
x.SetFlopCounter(counter);
Epetra_Time timer(Comm);
x.Dot(y,&dotProduct);
double elapsed_time = timer.ElapsedTime();
double total_flops =counter.Flops();
cout << "Total ops: " << total_flops << endl;
double MFLOPs = total_flops/elapsed_time/1000000.0;
cout << "Total MFLOPs for mat-vec = " << MFLOPs << endl<< endl;

This code is reported in didasko/examples/epetra/ex20.cpp. The output will be approxi-
matively as follows:

[msala:epetra]> mpirun -np 2 ./ex20
Total ops: 734
Total MFLOPs for mat-vec = 6.92688

Total ops: 734
Total MFLOPs for mat-vec = 2.48021

Total ops: 246
Total MFLOPs for vec-vec = 0.500985

q dot z = 2
Total ops: 246
Total MFLOPs for vec-vec = 0.592825

q dot z = 2

4.3. Epetra Operator and Epetra RowMatrix Classes 37

Remark 8. Operation count are serial count, and therefore keep track of local operations
only.

Remark 9. Each computational class has a Flops() method, that may be queried for the
flop count of that object.

4.3 Epetra Operator and Epetra RowMatrix Classes

Matrix-free methods are introduced in the Epetra framework using either of the following two
classes:

• Epetra Operator;

• Epetra RowMatrix.

Each class is a pure virtual class (specifing interfaces only), that enable the use of real-
valued double-precision sparse matrices. Epetra RowMatrix, derived from Epetra Operator,
is meant for matrices where the matrix entries are intended for row access, and it is cur-
rently implemented by Epetra CrsMatrix, Epetra VbrMatrix, Epetra FECrsMatrix, and Epe-
tra FEVbrMatrix.

Consider for example the 3-point centered difference discretization of a one dimensional
Laplacian on a regular grid. For the sake of simplicity, we avoid the issues related to intra-
process communication (hence this code can be run with one process only).

The first step is the definition of a class, here called TriDiagonalOperator, and derived
from the Epetra Operator class.

class TriDiagonalOperator : public Epetra_Operator {
public:
// .. definitions here, constructors and methods
private:
Epetra_Map Map_;
double diag_minus_one_; // value in the sub-diagonal
double diag_; // value in the diagonal
double diag_plus_one_; // value in the super-diagonal

}

As the class Epetra Operator implements several virtual methods, we have to specify all those
methods in our class. Among them, we are interested in the Apply method, which may be
coded as follows:

int Apply(const Epetra_MultiVector & X,
Epetra_MultiVector & Y) const {

int Length = X.MyLength();

// need to handle multi-vectors and not only vectors
for(int vec=0 ; vec<X.NumVectors() ; ++vec) {

// one-dimensional problems here
if(Length == 1) {

38 Chapter 4. Other Epetra Classes

Y[vec][0] = diag_ * X[vec][0];
break;

}

// more general case (Lenght >= 2)
// first row
Y[vec][0] = diag_ * X[vec][0] + diag_plus_one_ * X[vec][1];

// intermediate rows
for(int i=1 ; i<Length-1 ; ++i) {
Y[vec][i] = diag_ * X[vec][i] + diag_plus_one_ * X[vec][i+1]
+ diag_minus_one_ * X[vec][i-1];

}
// final row
Y[vec][Length-1] = diag_ * X[vec][Length-1]
+ diag_minus_one_ * X[vec][Length-2];

}
return true;

}

Now, in the main function, we can define a TriDiagonalOperator object using the specified
constructor:

TriDiagonalOperator TriDiagOp(-1.0,2.0,-1.0,Map);

and

DiagOp.Apply(x,y);

computes the discrete Laplacian on x and returns the product in y.
didasko/examples/epetra/ex21.cpp reportes the complete source code.

Remark 10. The clear disadvantage of deriving Epetra Operator or Epetra RowMatrix with
respect to use Epetra CrsMatrix or Epetra VbrMatrix, is that users must specify their com-
munication pattern for intra-process data exchange. For this purpose, Epetra Import classes
can be used. File didasko/examples/epetra/ex22.cpp shows how to extend ex21.cpp to
the multi-process case. This example makes use of the Epetra Import class to exchange data.

Another use of Epetra Operator and Epetra RowMatrix is to allow support for user de-
fined matrix format. For instance, suppose that your code generates matrices in MSR format
(detailed in the Aztec documentation). You can easily create an Epetra Operator, that applies
the MSR format to Epetra MultiVectors. For the sake of simplicity, we will limit ourselves
to the serial case. In the distributed, we must also handle ghost-node updates.

As a first step, we create a class, derived from the Epetra Operator class,

class MSRMatrix : public Epetra_Operator
{

public:
// constructor

4.4. Epetra LinearProblem 39

MSRMatrix(Epetra_Map Map, int * bindx, double * val) :
Map_(Map), bindx_(bindx), val_(val)

{}

~MSRMatrix() // destructor
{}

// Apply the RowMatrix to a MultiVector
int Apply(const Epetra_MultiVector & X, Epetra_MultiVector & Y) const
{

int Nrows = bindx_[0]-1;

for(int i=0 ; i<Nrows ; i++) {
// diagonal element
for(int vec=0 ; vec<X.NumVectors() ; ++vec) {
Y[vec][i] = val_[i]*X[vec][i];

}
// off-diagonal elements
for(int j=bindx_[i] ; j<bindx_[i+1] ; j++) {
for(int vec=0 ; vec<X.NumVectors() ; ++vec) {
Y[vec][bindx_[j]] += val_[j]*X[vec][bindx_[j]];

}
}

}
return 0;

} /* Apply */
... other functions ...

private:
int * bindx_; double * val_;

}

In this sketch of code, the constructor takes the two MSR vectors, and an Epetra Map. The
complete code is reported in
didasko/examples/epetra/ex25.cpp.

4.4 Epetra LinearProblem

A linear system AX = B is defined by an Epetra LinearProblem class. The class requires
an Epetra RowMatrix or an Epetra Operator object (often an Epetra CrsMatrix or Epe-
tra VbrMatrix), and two (multi-)vectors X and B. X must have been defined using a map
equivalent to the DomainMap of A, while B using a map equivalent ot the RangeMap of A
(see Section 3.2).

Linear systems may be solved either by iterative methods (typically, using AztecOO,
covered in Chapter 7), or by direct solvers (typically, using Amesos, described in Chapter 12).

Once the linear problem has been defined, the user can:

40 Chapter 4. Other Epetra Classes

void SetPDL (ProblemDifficultyLevel PDL)
Set problem difficulty level.
void SetOperator (Epetra RowMatrix *A)
Set Operator A of linear problem AX = B using an Epetra RowMatrix.
void SetOperator (Epetra Operator *A)
Set Operator A of linear problem AX = B using an Epetra Operator.
void SetLHS (Epetra MultiVector *X)
Set left-hand side X of linear problem AX = B.
void SetRHS (Epetra MultiVector *B)
Set right-hand side B of linear problem AX = B.
int CheckInput () const
Check input parameters for existence and size consistency.
int LeftScale (const Epetra Vector &D)
Perform left scaling of a linear problem.
int RightScale (const Epetra Vector &D)
Perform right scaling of a linear problem.
Epetra Operator * GetOperator () const
Get a pointer to the operator A.
Epetra RowMatrix * GetMatrix () const
Get a pointer to the matrix A.
Epetra MultiVector * GetLHS () const
Get a pointer to the left-hand-side X.
Epetra MultiVector * GetRHS () const
Get a pointer to the right-hand-side B.
ProblemDifficultyLevel GetPDL () const
Get problem difficulty level.
bool IsOperatorSymmetric () const
Get operator symmetry bool.

Table 4.1: Methods of Epetra LinearProblem

• scale the problem, using LeftScale(D) or RightScale(D), D being an Epetra Vector
of compatible size;

• change X and B, using SetRHS(&B) and SetLHS(&X);

• change A, using SetOperator(&A).

Please refer to Table 4.1 for a summary of the methods.

4.5 Concluding Remarks on Epetra

More details about the Epetra project, and a technical description of classes and methods,
can be found in [Her02].

5
MATLAB I/O with EpetraExt

Marzio Sala

EpetraExt is a collection of utilities for the handling of Epetra objects. In this Chapter
we will explain the usage of the input/output of Epetra objects to/from Matrix Market
format. We will consider the following classes:

• EpetraExt::VectorToMatrixMarketFile (in Section 5.1);

• EpetraExt::RowMatrixToMatrixMarketFile (in Section 5.2);

By using these classes, some Epetra objects can be easily exported to MATLAB.

5.1 EpetraExt::VectorToMatrixMarketFile

The Matrix Market format is a simple, portable and human-readable format. The specifica-
tions to create the corresponding ASCII files can be found at

http://math.nist.gov/MatrixMarket/

where MATLAB files to perform I/O can be downloaded. Let us consider that X is an
Epetra Vector object. This object can be saved on file in both serial and parallel computations
by using the command

EpetraExt::VectorToMatrixMarketFile(FileName, X, descr1, descr2);

where FileName is the output file name (for example, X.mm), and descr1 and descr2 are two
description strings. By using the mmread.m MATLAB script available at the Matrix Market
web site, one can type within MATLAB

>> X = mmread(’X.mm’);

then use X for any MATLAB operation. For multivectors, one should use the class
EpetraExt::MultiVectorToMatrixMarketFile instead.

41

42 Chapter 5. MATLAB I/O with EpetraExt

5.2 EpetraExt::RowMatrixToMatrixMarketFile

Equivalently to what explained in Section 5.1, one can export an Epetra RowMatrix derived
class to a sparse MATLAB array. Let us consider for example the following code, that creates
a distributed diagonal matrix:

int NumMyElements = 5;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
Epetra_CrsMatrix A(Copy, Map, 0); // create a simple diagonal matrix
for (int i = 0 ; i < NumMyElements ; ++i)
{
int j = Map.GID(i);
double value = 1.0;
EPETRA_CHK_ERR(A.InsertGlobalValues(j, 1, &value, &j));

}
A.FillComplete();

The matrix can be exported as follows:

EpetraExt::RowMatrixToMatrixMarketFile("A.mm", A, "test matrix",
"This is a test matrix");

and then read in MATLAB as

>> A = mmread(’A.mm’)

A =

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1

This example is contained in didasko/examples/epetraext/ex3.cpp.

5.3 Concluding Remarks

EpetraExt contains other several classes not described here. Among them, we note that
one can read Epetra Map’s, Epetra MultiVector’s and Epetra CrsMatrix’s from file when
previously saved using EpetraExt output functions. Also, EpetraExt offers reordering and
coloring. The Zoltan interface is later described in Chapter 15.

6
Generating Linear Systems with
Triutils
Marzio Sala

This Chapter presents two functionalities of Triutils, that will be extensively used in the
examples of the later chapters:

• the Triutils command line parser (in Section 6.1);

• the Triutils matrix generator (in Section 6.2).

Some readers may choose to skip this Chapter because their application is their example.
However, it does help to find the test matrices closest to the ones in their code for several
reasons. Using well-chosen matrices, simple but sufficiently close to the final application,
one can quickly test the performances of a given set of algorithms on the problem of
interest, using a serial or a parallel environment. Several test matrices exhibit a known
behavior (e.g., theory predicts the behavior of the condition number), and can be used
to validate algorithms. Besides, as they can be quickly generate with few code lines,
experts may use them to optimize or fix thier code. Therefore, a short code using a
gallery matrix may be used to communicate with developers.

6.1 Trilinos Util::CommandLineParser

It is possible to use the
Trilinos_Util::CommandLineParser class to parse the command line. With this class, it
is easy to handle input line arguments and shell-defined variables. For instance, the user can
write

[msala:triutils]>ex2.exe -nx 10 -tol 1e-6 -solver=cg -output

and, in the code, easily obtain the value of nx, tol, and solver, using a simple code as
follows:

int main(int argc, char *argv[])
{

Trilinos_Util::CommandLineParser CLP(argc,argv);
int nx = CLP.Get("-nx", 123);

43

44 Chapter 6. Generating Linear Systems with Triutils

int ny = CLP.Get("-ny", 145);
double tol = CLP.Get("-tol", 1e-12);
string solver = CLP.Get("-solver","gmres");

bool Output = CLP.Has("-output");

cout << "nx = " << nx << endl;
cout << "ny = " << ny << " (default value)" << endl;
cout << "tol = " << tol << endl;
cout << "solver = " << solver << endl;

return 0;
}

In the command line, the user can specify a value for a given option in the following ways:

• -tolerance 1e-12 (with one or more spaces)

• -tolerance=1e-12 (with = sign and no spaces)

Option names must begin with one or more dashes (‘-’). Options may have at most one
value.

If option name is not found in the database, the default value is returned. If needed,
the user can also specify a default value to return when the option name is not found in the
database. The method HaveOption will query the database for an option.

File didasko/examples/triutils/ex2.cpp gives an example of the usage of this class.

6.2 Trilinos Util::CrsMatrixGallery

The class Trilinos_Util::CrsMatrixGallery provides functions similar to the MATLAB’s
gallery function1.

A typical constructor requires the problem type and an Epetra Comm, and is followed
by a set of instructions to specify the problem. The following example creates a matrix
corresponding to the discretization of a 2D Laplacian on a Cartesian grid with 100 points:

Trilinos_Util::CrsMatrixGallery Gallery("laplace_2d", Comm);
Gallery.Set("problem_size",100);
Gallery.Set("map_type","linear");
Gallery.Set("exact_solution","random");

The nodes are decomposed linearly, and the exact solution is a random vector.
The next example will read a matrix stored in Harwell/Boeing format:

Trilinos_Util::CrsMatrixGallery Gallery("hb", Comm);
Gallery.Set("matrix_name","bcsstk14.rsa");
Gallery.Set("map_type","greedy");

1Many of the matrices that can be created using Trilinos Util::CrsMatrixGallery are equivalent or simiilar
to those provided by the MATLAB c© function gallery. In these cases, the reader is referred to the MATLAB
documentation for more details about the matrices’ properties.

6.2. Trilinos Util::CrsMatrixGallery 45

The example reads the matrix (and, if available, solution and right-hand side) from the file
bcsstk14.rsa, and partitions the matrix across the processes using a simple greedy algorithm.

Once all the required parameters have been specified, the user can get a pointer to the
constructed Epetra CrsMatrix, to the exact and starting solution, and to the right-hand side
(both Epetra Vector’s):

A = Gallery.GetMatrix();
ExactSolution = Gallery.GetExactSolution();
RHS = Gallery.GetRHS();
StartingSolution = Gallery.GetStartingSolution();

An Epetra LinearProblem is defined by

Epetra_LinearProblem Problem(A,StartingSolution,RHS);

Next one may use AztecOO to solve the linear system:

AztecOO Solver(Problem);
Solver.SetAztecOption(AZ_precond, AZ_dom_decomp);
Solver.Iterate(1000,1E-9);

Using Trilinos Util::MatrixGallery, one computes the true residual and the difference between
computed and exact solution:

double residual;
Gallery.ComputeResidual(&residual);

Gallery.ComputeDiffBetweenStartingAndExactSolutions(&residual);

A list of methods implemented by Trilinos Util::CrsMatrixGallery is reported in Table 6.1.
The matrix can be written on a file in MATLAB format, using

string FileName = "matrix.m";
bool UseSparse = false;
Gallert.WriteMatrix(FileName,UseSparse);

If UseSparse is true, the matrix is created in sparse format (using the MATLAB command
spalloc).

To sum up, the main options reviewed here are:

problem type [string] Specifies the problem type. A list of currently available
problems is reported later in this section.

problem size [int] Size of the problem. Note that some problems, defined on
structured meshes, allow the specification of the number of nodes on
the x-, y- and z-axis. Please refer to each problem’s description for
more details.

nx [int] Number of nodes in the x-direction (if supported by the specific
problem).

46 Chapter 6. Generating Linear Systems with Triutils

GetMatrix()
Returns a pointer to the internally stored Epetra CrsMatrix.

GetExactSolution()
Returns a pointer to the internally stored exact solution vector (as an Epe-
tra Vector).

GetStartingSolution()
Returns a pointer to the internally stored starting solution vector (as an Epe-
tra Vector).

GetRhs()
Returns a pointer to the internally stored right-hand side (as an Epetra Vector).

GetLinearProblem()
Returns a pointer to the internally stored Epetra LinearProblem for the VBR ma-
trix).

GetMap()
Returns a pointer to the internally stored Epetra Map.

Table 6.1: Methods of class Trilinos Util::CrsMatrixGallery.

ny [int] Number of nodes in the y-direction (if supported by the specific
problem).

nz [int] Number of nodes in the z-direction (if supported by the specific
problem).

mx [int] Number of processes in the x-direction (if supported by the
specific problem).

my [int] Number of processes in the y-direction (if supported by the
specific problem).

mz [int] Number of processes in the z-direction (if supported by the
specific problem).

map type [string] Defines the data layout across the processes. See Table 6.2.

exact solution [string] Defines the exact solution. See Table 6.3.

starting solution [string] Defines the starting solution vector. It can be: zero or
random.

6.2. Trilinos Util::CrsMatrixGallery 47

linear Create a linear map. Elements are divided into continuous
chunks among the processors. This is the default value.

box Used for problems defined on Cartesian grids over a square.
The domain is subdivided into mx x my subdomains. mx and
my are automatically computed if the total number of pro-
cesses is a perfect square. Alternatively, mx and my are spec-
ified via Set("mx",IntValue) and Set("my",IntValue).

interlaced Elements are subdivided so that element i is assigned to
process i%NumProcs.

random Assign each node to a random process
greedy (only for HB matrices) implements a greedy algorithm to

decompose the graph of the HB matrix among the processes

Table 6.2: Available map type optins.

random Random values
constant All elements set to 1.0.
quad x Nodes are supposed to be distributed over the 1D segment

(0, 1), with equal spacing, and the solution is computed as
x(1− x).

quad xy Nodes are supposed to be distributed over the square (0, 1)×
(0, 1) , with equal spacing, and the solution is computed as
x(1− x)y(1− y).

Table 6.3: Available exact solution options.

A list of currently available problems is reported below. We use the following notation.
IntValue always refer to a generic positive integer. The following symbols a,b,c,d,e,f,g
always refer to double-precision values. Note that some matrices are dense, but still stored
as Epetra CrsMatrix, a sparse matrix format. The generic (i, j) element of a given matrix is
Ai,j (for simplicity, we suppose that indices start from 12). n represents the matrix size.

eye Creates an identity matrix. The size of the problem is set using
Set("problem size", IntValue), or, alternatively, by Set("nx",
IntValue).

cauchy Creates a particular instance of a Cauchy matrix with elements
Ai,j = 1/(i + j). Explicit formulas are known for the inverse and
determinant of a Cauchy matrix. For this particular Cauchy matrix,
the determinant is nonzero and the matrix is totally positive.

2It is understood that, in the actual implementation, indices start from 0.

48 Chapter 6. Generating Linear Systems with Triutils

cross stencil 2d Creates a matrix with the same stencil of laplace 2d, but with ar-
bitrary values. The stencil is

A =

 e
b a c

d

 .

The default values are a=5, b=c=d=e=1. The problem size is speci-
fied as in laplace 2d.

cross stencil 3d Similar to the 2D case. The matrix stencil correspond to that of a
3D Laplace operator on a structured grid. On a given x-y plane, the
stencil is as in laplace 2d. The value on the plane below is set using
Set("f",F), and in the plane above with Set("g",G"). The default
values are a=7,b=c=d=e=f=g=1. The problem size is specified as in
laplace3d.

diag Creates a diagonal matrix. The elements on the diagonal can be set
using Set("a",value). Default value is a = 1. The problem size is
set as for eye.

fiedler Creates a matrix whose element are Ai,j = |i − j|. The matrix is
symmetric, and has a dominant positive eigenvalue, and all the other
eigenvalues are negative.

hanowa Creates a matrix whose eigenvalues lie on a vertical line in the com-
plex plane. The matrix has the 2x2 block structure (in MATLAB’s
notation)

A =
[

a * eye(n/2) -diag(1:m)
diag(1:m) a * eye(n/2)

]
.

The complex eigenvalues are of the form a k
√
−1 and −k

√
−1, for

1 ≤ k ≤ n/2. The default value for a is -1.

hb The matrix is read from file. File name is specified by Set("file
name", FileName). FileName is a C++ string. The problem size is
automatically determined.

hilbert This is a famous example of a badly conditioned matrix. The ele-
ments are defined as Ai,j = 1/(i + j).

jordblock Creates a Jordan block with eigenvalue set via Set("a",DoubleVal).
The default value is 0.1. The problem size is specified as for eye.

kms Create the n×n Kac-Murdock-Szegö Toepliz matrix such that Ai,j =
ρ|i−j| (for real ρ only). Default value is ρ = 0.5, or can be set as
Set("a",value). The inverse of this matrix is tridiagonal, and the
matrix is positive definite if and only if 0 < |ρ| < 1.

6.2. Trilinos Util::CrsMatrixGallery 49

laplace 1d Creates the classical tridiagonal matrix with stencil [-1, 2, -1]. The
problem size is specified as for eye.

laplace 1d n As for laplace 1d, but with Neumann boundary condition. The
matrix is singular.

laplace 2d Creates a matrix corresponding to the stencil of a 2D Laplacian op-
erator on a structured Cartesian grid. The problem size is speci-
fied using Set("problem size", IntValue). In this case, IntValue
must be a perfect square. Alternatively, one can set the number of
nodes along the x-axis and y-axis, using Set("nx",IntValue) and
Set("ny",IntValue).

laplace 2d n As for laplace 2d, but with Neumann boundary condition. The
matrix is singular.

laplace 3d Creates a matrix corresponding to the stencil of a 3D Laplacian op-
erator on a structured Cartesian grid. The problem size is speci-
fied using Set("problem size",IntValue). In this case, IntValue
must be a cube. Alternatively, one can specify the number of nodes
along the axis, using Set("nx",IntValue), Set("ny",IntValue),
and Set("nz",IntValue).

lehmer Returns a symmetric positive definite matrix, such that

Ai,j =

{
i
j if j ≥ i
j
i otherwise

.

This matrix has three properties: is totally nonnegative, the inverse
is tridiagonal and explicitly known, The condition number is bounded
as n ≤ cond(A) ≤ 4 ∗ n. The problem size is set as for eye.

minij Returns the symmetric positive definite matrix defined as Ai,j =
min(i, j). The problem size is set as for eye.

ones Creates a matrix with equal elements. The default value is 1, and
cab be changed using Set("a",a).

parter Creates a matrix Ai,j = 1/(i− j +0.5). This matrix is a Cauchy and
a Toepliz matrix. Most of the singular values of A are very close to
π. The problem size is set as for eye.

50 Chapter 6. Generating Linear Systems with Triutils

pei Creates the matrix

Ai,j =
{

α + 1 if i 6= j
1 if i = j.

.

The value of α can be set as Set("a",value), and it defaults to 1.
This matrix is singular for α = 0 or −n.

recirc 2d Returns a matrix corresponding to the finite-difference discretization
of the problem

−µ∆u + (vx, vy) · ∇u = f

on the unit square, with homogeneous Dirichlet boundary conditions.
A standard 5-pt stencil is used to discretize the diffusive term, and
a simple upwind stencil is used for the convective term. Here,

vx = (y − 1/2)V, vy = (1/2− x)V

The value of µ can be specified using Set("diff", DoubleValue),
and that of V using Set("conv", DoubleValues). The default
values are µ = 10−5, V = 1. The problem size is specified as in
laplace 3d.

ris Returns a symmetric Hankel matrix with elements Ai,j = 0.5/(n −
i − j + 1.5), where n is problem size. The eigenvalues of A cluster
around −π/2 and π/2.

tridiag Creates a tridiagonal matrix. The diagonal element is set using
Set("a", a), the subdiagonal using Set("b",b), and the super-
diagonal using Set("c",c). The default values are a=2, b=c=1. The
problem size is specified as for eye.

uni flow 2d Returns a matrix corresponding to the finite-difference discretization
of the problem

−µ∆u + (vx, vy) · ∇u = f

on the unit square, with homogeneous Dirichlet boundary conditions.
A standard 5-pt stencil is used to discretize the diffusive term, and
a simple upwind stencil is used for the convective term. Here,

vx = cos(α)V, vy = sin(α)V

that corresponds to an unidirectional 2D flow. The value of µ can
be specified using Set("diff", DoubleValue), and that of V us-
ing Set("conv", DoubleValue), and that of α using Set("alpha",
DoubleValue). The default values are V = 1, µ = 10−5, α = 0. The
problem size is specified as in laplace3d.

Class Trilinos Util::VrbMatrixGallery, derived from Trilinos Util::CrsMatrixGallery, can

6.2. Trilinos Util::CrsMatrixGallery 51

be used to generate VBR matrices. The class creates an Epetra CrsMatrix (following user’s
defined parameters, as previously specified), then “expands” this matrix into a VBR matrix.
This VBR matrix is based on an Epetra BlockMap, based on the Epetra Map used to de-
fine the Epetra CrsMatrix. The number of PDE equations per node is set with parameter
num_pde_eqns. The Epetra CrsMatrix is expanded into a VBR matrix by replicating the
matrix num_pde_eqns times for each equation.

A list of methods implemented by Trilinos Util::VrbMatrixGallery is reported in Table 6.4.

GetVrbMatrix()
Returns a pointer to the internally stored VBR matrix.
GetVrbExactSolution()
Returns a pointer to the internally stored exact solution vector (as an Epe-
tra Vector).
GetVrbStartingSolution()
Returns a pointer to the internally stored starting solution vector (as an Epe-
tra Vector).
GetVrbRhs()
Returns a pointer to the internally stored right-hand side (as an Epetra Vector).
GetVrbLinearProblem()
Returns a pointer to the internally stored Epetra LinearProblem.
GetBlockMap()
Returns a pointer to the internally stored Epetra BlockMap.

Table 6.4: Methods of class Trilinos Util::VbrMatrixGallery.

Trilinos Util::CrsMatrixGallery can be used in conjuction with Trilinos Util::CommandLineParser
as in the following code:

int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

#else
Epetra_SerialComm Comm;

#endif

Epetra_Time Time(Comm);

Trilinos_Util::CommandLineParser CLP(argc,argv);
Trilinos_Util::CrsMatrixGallery Gallery("", Comm);

Gallery.Set(CLP);

// get matrix
Epetra_CrsMatrix * Matrix = Gallery.GetMatrix();
Epetra_Vector * LHS = Gallery.GetLHS();
Epetra_Vector * StartingSolution = Gallery.GetStartingSolution();

52 Chapter 6. Generating Linear Systems with Triutils

Epetra_Vector * ExactSolution = Gallery.GetExactSolution();
Epetra_LinearProblem * Problem = Gallery.GetLinearProblem();

// various computatons...

// check that computed solution (in StartingSolution)
// is close enough to ExactSolution

double residual, diff;

Gallery.ComputeResidual(&residual);
Gallery.ComputeDiffBetweenStartingAndExactSolutions(&diff);

if(Comm.MyPID()==0)
cout << "||b-Ax||_2 = " << residual << endl;

if(Comm.MyPID()==0)
cout << "||x_exact - x||_2 = " << diff << endl;

#ifdef HAVE_MPI
MPI_Finalize() ;

#endif

return 0 ;

}

This program can be executed with the following command line:

[msala:triutils]> mpirun -np 4 ex1.exe -problem_type=laplace_2d \
-problem_size=10000

Matrix gallery option names shall be specified with an additional leading dash (“-”). Options
values will be specified as usual.

Remark 11. Most of the examples reported in the following chapters use both
Trilinos Util::CommandLineParser and Trilinos Util::CrsMatrixGallery to define the distributed
matrix. The user is encouraged to test a given method using matrices with different numerical
properties.

7
Iterative Solution of Linear Systems
with AztecOO
Marzio Sala, Michael Heroux, David Day

The AztecOO [Her04] package extends the Aztec library [THHS99]. Aztec is the legacy
iterative solver at the Sandia National Laboratories. It has been extracted from the
MPSalsa reacting flow code [SMH+95, SDH+96], and it is currently installed in dozens
of Sandia’s applications. AztecOO extends this package, using C++ classes to enable
more sophisticated uses.
AztecOO is intended for the iterative solution of linear systems of the form

A X = B, (7.1)

when A ∈ Rn×n is the linear system matrix, X the solution, and B the right-hand side.
Although AztecOO can live independently of Epetra, in this tutorial it is supposed that
A is an Epetra RowMatrix, and both X and B are Epetra Vector or Epetra MultiVector
objects.
The Chapter reviews the following topics:

• Outline the basic issue of the iterative solution of linear systems (in § 7.1);

• Present the basic usage of AztecOO (in § 7.2);

• Define one-level domain decomposition preconditioners (in § 7.3);

• Use of AztecOO problems as preconditioners to other AztecOO problems (in § 7.4).

7.1 Theoretical Background

Our aim is to briefly present the vocabulary and notation required to define the main features
available to users. The Section is neither exhaustive, nor complete. Readers are referred to
the existing literature for a comprehensive presentation (see, for instance, [BBC+94, Axe94,
Saa96]).

One can distinguish between two different aspects of the iterative solution of a linear sys-
tem. The first one in the particular acceleration technique for a sequence of iterations vectors,
that is a technique used to construct a new approximation for the solution, with information

53

54 Chapter 7. Iterative Solution of Linear Systems with AztecOO

from previous approximations. This leads to specific iteration methods, generally of Krylov
type, such as conjugate gradient or GMRES. The second aspect is the transformation of the
given system to one that is solved more efficiently by a particular iteration method. This
is called preconditioning. A good preconditioner improves the convergence of the iterative
method, sufficiently to overcome the extra cost of its construction and application. Indeed,
without a preconditioner the iterative method may even fail to converge in practice.

The convergence of iterative methods depends on the spectral properties of the linear
system matrix. The basic idea is to replace the original system (7.1) by the left preconditioned
system,

P−1A X = P−1B

or the right preconditioned system

AP−1 PX = B

using the linear transformation P−1, called preconditioner, in order to improve the spectral
properties of the linear system matrix. In general terms, a preconditioner is any kind of
transformation applied to the original system which makes it easier to solve.

From a modern perspective, the general problem of finding an efficient preconditioner is
to identify a linear operator P with the following properties:

1. P−1A is near to the identity matrix

2. The cost of applying the preconditioner is relatively low.

3. Preconditioning is scalable.

The role of the P in the iterative method is simple. At each iteration, it is necessary to
solve an auxiliary linear system Pzm = rm for zm given rm. It is unnecessary to explicitly
invert P .

It should be stressed that computing the inverse of P is not mandatory; actually, the role
of P is to “preconditioning” the residual at step m, rm, through the solution of the additional
system Pzm = rm. This system Pzm = rm should be much easier to solve than the original
system.

The choice of P varies from “black-box” algebraic techniques for general matrices to
“problem dependent” preconditioners that exploit special features of a particular class of
problems. Although problem dependent preconditioners may be very powerful, there is still
a practical need for efficient preconditioning techniques for large classes of problems. Even
the “black-box” preconditioners require parameters, and suitable parameter settings do vary.
Between these two extrema, there is a class of preconditioners which are “general-purpose”
for a particular – although large – class of problems. These preconditioners are sometimes
called “gray-box” preconditioners; users supply a little information about the matrix and the
problem to be solved.

The AztecOO preconditioners include Jacobi, Gauss-Seidel, polynomial and domain de-
composition based methods [SBG96]. Furthermore preconditioners can be given to an AztecOO
Krylov accelerator, by using the Trilinos packages IFPACK and ML, covered in § 9 and 11,
respectively.

7.2. Basic Usage 55

7.2 Basic Usage

First we delineate the steps required to apply AztecOO to a linear system. To solve a linear
system with AztecOO, one must create an Epetra_LinearProblem object (see § 4.4) with
the command

Epetra_LinearProblem Problem(&A,&x,&b);

A is an Epetra matrix, and both x and b are Epetra vectors1. Second create an AztecOO
object,

AztecOO Solver(Problem);

Next specify how to solve the linear system. All AztecOO options are set using two vectors,
one of integers and the other of doubles, as detailed in the Aztec’s User Guide [THHS99].

To choose among the different AztecOO parameters, the user can create two vectors,
usually called options and params, set them to the default values, and then override with
the desired parameters. Here’s how to set default values:

int options[AZ_OPTIONS_SIZE];
double params[AZ_PARAMS_SIZE];
AZ_defaults(options, params);

Solver.SetAllAztecOptions(options);
Solver.SetAllAztecParams(params);

The latter two functions copy the values of options and params to variables internal to the
AztecOO object.

Alternatively, it is possible to set specific parameters without creating options and
params, using the AztecOO methods SetAztecOption() and SetAztecParams(). For in-
stance,

Solver.SetAztecOption(AZ_precond, AZ_Jacobi);

to specify a point Jacobi preconditioner. (Please see to the Aztec documentation [Her04] for
more details about the various Aztec settings.)

Finally solve the linear system, say with a maximum of 1550 iterations and the residual
error norm threshold 10−9:

Solver.Iterate(1550,1E-9);

The complete code is in didasko/examples/aztec/ex1.cpp.
Note that the matrix must be in local form (that is, the command A.FillComplete()

must have been invoked before solving the linear system). The same AztecOO linear system
solution procedure applies in serial and in parallel. However for some preconditioners, the
convergence rate (and the number of iterations) depends on the number of processor.

When Iterate() returns, one can query for the number of iterations performed by the
linear solver using Solver.NumIters(), while Solver.TrueResidual() gives the (unscaled)
norm of the residual.

1At the current stage of development, AztecOO does not take advantage of the Epetra MultiVectors. It
accepts Multi Vectors, but it will solve the linear system corresponding to the first multivector only. The Belos
package implements block Krylov subspace methods that are significantly more efficient for linear systems with
multiple simultaneous right-hand sides.

56 Chapter 7. Iterative Solution of Linear Systems with AztecOO

7.3 Overlapping Domain Decomposition Preconditioners

A one level overlapping domain decomposition preconditioner P takes the form

P−1 =
M∑
i=1

RT
i Ã−1

i Ri, (7.2)

The number of subdomains is M , Ri is a rectangular Boolean matrix that restricts a global
vector to the subspace defined by the interior of the ith subdomain, and Ãi approximates

Ai = RiART
i . (7.3)

(Ãi may equal Ai). Typically, Ãi differs from Ai when incomplete factorizations are used in
(7.2) to apply Ã−1

i , or when a matrix different from A is used in (7.3).
(7.3), The specification starts with

Solver.SetAztecOption(AZ_precond, AZ_dom_decomp);

Next if an incomplete factorization of Ai will be used, then specify its parameters:

Solver.SetAztecOption(AZ_subdomain_solve, AZ_ilu);
Solver.SetAztecOption(AZ_graph_fill, 1);

On the other hand, exact subdomain solves 2 are specified like this:

Solver.SetAztecOption(AZ_subdomain_solve, AZ_lu);

The default amount of overlap is 0; this is equivalent to “block” Jacobi preconditioning
with block size equal to the size of the subdomain. If amount of overlap is one (k),

Solver.SetAztecOption(AZ_overlap, 1);

then the “block” is augmented by all distance one (k), neighbors in the sparse matrix graph.

Remark 12. Two-level domain decomposition schemes [SBG96] are available through AztecOO
in conjunction with ML. Please see § 11.5.

Remark 13. The IFPACK Trilinos package (see § 9) computes different incomplete factor-
izations.

Consider for example a Laplace equation descretized with the 5-point stencil over a regular
Cartesian grid on a square. If h is the mesh size, then the condition number of the unprecon-
ditioned system is O(h)−2. In theory [SBG96] if H is the size of each (square) subdomain, a
one level Schwarz preconditioner with minimal overlap yields a preconditioned linear system
with condition number O(hH)−1. The AztecOO preconditioner delivers the Table 7.1 gives
the estimated condition numbers for the corresponding AztecOO preconditioner.

The corresponding source code is contained in
didasko/examples/aztecoo/ex3.cpp
The code uses the Trilinos Util CrsMatrixGallery class to create the matrix. The command
to estimate the condition number with h = 1/60 and H = 1/3 is

mpirun -np 9 ex3.exe -problem_type=laplace_2d \
-problem_size=900 -map_type=box

2AztecOO must be configured with the option --enable-aztecoo-azlu, and the package Y12M is required.

7.4. AztecOO Problems as Preconditioners 57

h = 1/30 h = 1/60 h = 1/120
H = 1/3 40.01 83.80 183.41
H = 1/4 51.46 106.01 223.22
H = 1/6 79.19 150.40 311.26
H = 1/8 - 191.06 403.29

Table 7.1: Condition number for one-level domain decomposition preconditioner on a square.

7.4 AztecOO Problems as Preconditioners

Preconditioners fall into two categories. In the first category are preconditioners that are
a function of the entires of the coefficient matrix. Examples include Jacobi, Gauss-Seidel,
incomplete factorizations, and domain decomposition preconditioners. The second category
contains preconditioners such as polynomial preconditioners that are defined by the action
of the matrix on some set of vectors. Note that only category two preconditioners apply in
matrix free mode. The topic of this section is another type of category two preconditioner,
preconditioning one Krylov subspace method by another Krylov subspace method.

AztecOO accepts Epetra Operator objects as preconditioners. That is any class, derived
from an Epetra Operator implementing the method ApplyInverse() may also be used as
a preconditioner, using SetPreOperator(). AztecOO itself can be used to define a precon-
ditioner for AztecOO; the class AztecOO Operator (which takes an AztecOO object in the
construction phase) is derived from Epetra Operator.

File didasko/examples/aztecoo/ex2.cpp shows how to use an AztecOO solver in the
preconditioning phase. The main steps are sketched here.

First, we have to specify the linear problem to be solved (set the linear operator, the
solution and the right-hand side), and create an AztecOO object:

Epetra_LinearProblem A_Problem(&A, &x, &b);
AztecOO A_Solver(A_Problem);

Now, we have to define the preconditioner. For the sake of clarity, we use the same Epe-
tra Matrix A in the preconditioning phase. However, the two matrices may differ.

Epetra_CrsMatrix P(A);

(This operation is in general expensive as it involves the copy constructor. It is used here for
the sake of clarity.) Then, we create the linear problem that will be used as a preconditioner.
This takes a few steps to explain. Note that all the P prefix identifies preconditioner’ objects.

1. Create the linear system solve at each preconditioning step, and and we assign the linear
operator (in this case, the matrix A itself)

Epetra_LinearProblem P_Problem;
P_Problem.SetOperator(&P);

2. As we wish to use AztecOO to solve the preconditioner step recursively, we have to
define an AztecOO object:

AztecOO P_Solver(P_Problem);

58 Chapter 7. Iterative Solution of Linear Systems with AztecOO

AZ_cg Conjugate Gradient method (intended for symmetric posi-
tive definite matrices).

AZ_cg_condnum AZ_cg that also estimates the condition number
of the preconditioned linear system (returned in
params[AZ_condnum])

AZ_gmres restarted Generalized Minimal Residual method
AZ_gmres_condnum AZ_gmres that also estimates the condition number

of the preconditioned linear operator (returned in
params[AZ_condnum])

AZ_cgs Conjugate Gradient Squared method
AZ_tfqmr Transpose-Free Quasi Minimal Residual method
AZ_bicgstab Bi-Conjugate Gradient with Stabilization method
AZ_lu Serial sparse direct linear solver available if AztecOO is con-

figured with --enable-aztecoo-azlu

Table 7.2: options[AZ solver] Choices

3. Specify a particular preconditioner:

P_Solver.SetAztecOption(AZ_precond, AZ_Jacobi);
P_Solver.SetAztecOption(AZ_output, AZ_none);
P_Solver.SetAztecOption(AZ_solver, AZ_cg);

4. Create an AztecOO Operator, to set the Aztec’s preconditioner with and set the users
defined preconditioners:

AztecOO_Operator
P_Operator(&P_Solver, 10);
A_Solver.SetPrecOperator(&P_Operator);

(Here 10 is the maximum number of iterations of the AztecOO solver in the precondi-
tioning phase.)

5. Solve the linear system:

int Niters=100;
A_Solver.SetAztecOption(AZ_kspace, Niters);
A_Solver.SetAztecOption(AZ_solver, AZ_gmres);
A_Solver.Iterate(Niters, 1.0E-12);

7.5 Concluding Remarks on AztecOO

The following methods are often used:

• NumIters() returns the total number of iterations performed on this problem;

7.5. Concluding Remarks on AztecOO 59

• TrueResidal() returns the true unscaled residual;

• ScaledResidual() returns the true scaled residual;

• SetAztecDefaults() can be used to restore default values in the options and params
vectors.

NumIters() is useful in performance optimization. A less costly preconditioner is viable if
NumIters() is “small”, and a more costly preconditioner may be worthwhile if NumIters()
is “large”. Many iterative methods with right preconditioning apply the residual error norm
threshold to the preconditioned residual, P−1r, instead of r = b − Ax. TrueResidal() will
always return the unscaled residual norm.

60 Chapter 7. Iterative Solution of Linear Systems with AztecOO

8
Iterative Solution of Linear Systems
with Belos
Chris Baker, Michael Heroux, Heidi Thornquist

Several goals motivated the development of the Belos linear solver package: interoper-
ability, extensibility, and the capability to use and develop next-generation linear solvers.
The intention of interoperability is to ease the use of Belos in a wide range of application
environments. To this end, the algorithms written in Belos utilize an abstract interface
for operators and vectors, allowing the user to leverage existing linear algebra libraries.
The concept of extensibility drives development of Belos to allow users to make efficient
use of available solvers while simultaneously enabling them to easily develop their own
code in the Belos framework. This is encouraged by promoting code modularization and
multiple levels of access to solvers and their data.
Another motivation for Belos was the capability to use and develop next-generation
linear solvers. These next-generation linear solvers should enable the efficient solution
of

• Single right-hand side systems: Ax = b

• Simultaneously solved, multiple right-hand side systems: AX = B

• Sequentially solved, multiple right-hand side systems: AXi = Bi, for i = 1, . . . , t

• Sequences of multiple right-hand side systems: AiXi = Bi, for i = 1, . . . , t

where A ∈ Rn×n, x, b ∈ Rn, and X, B ∈ Rn×k.
In this Chapter, we outline the Belos linear solver framework and motivate the design.
In particular, we present

• the Belos operator/vector interface (Section 8.1);

• the Belos linear solver framework (Section 8.2);

• a description of Belos classes (Section 8.3);

• the interface to the Epetra linear algebra package (Section 8.4);

• an example using Belos for the solution of a linear problem (Section 8.5).

61

62 Chapter 8. Iterative Solution of Linear Systems with Belos

8.1 The Belos Operator/Vector Interface

The Belos linear solver package utilizes abstract interfaces for operators and multivectors.
This allows users to leverage existing linear algebra libraries and to protect previous software
investment. Algorithms in Belos are developed at a high-level, where the underlying linear
algebra objects are opaque. The choice in linear algebra is made through templating, and
access to the functionality of the underlying objects is provided via the traits classes Be-
los::MultiVecTraits and Belos::OperatorTraits. These classes define opaque interfaces, speci-
fying the operations that multivector and operator classes must support in order to be used
in Belos without exposing low-level details of the underlying data structures.

The benefit of using a templated traits class over inheritance is that the latter requires
the user to derive multivectors and operators from Belos-defined abstract base classes. The
former, however, defines only local requirements: Belos-defined traits classes implemented as
user-developed adapters for the chosen multivector and operator classes.

Belos::MultiVecTraits provides routines for the creation of multivectors, as well as their
manipulation. In order to use a specific scalar type and multivector type with Belos, there
must exist a template specialization of Belos::MultiVecTraits for this pair of classes. A full
list of methods required by Belos::MultiVecTraits is given in Table 8.1.

Just as Belos::MultiVecTraits defined the interface required to use a multivector class with
Belos, Belos::OperatorTraits defines the interface required to use the combination of a specific
operator class with a specific multivector class. This interface defines a single method:

OperatorTraits<ScalarType,MV,OP>::Apply(const OP &Op, const MV &X, MV &Y)

This method performs the operation Y = Op(X), where Op is an operator of type OP and X
and Y are multivectors of type MV. In order to use the combination of OP and MV, there must
be a specialization of Belos::OperatorTraits for ScalarType, OP and MV.

Calling methods of MultiVecTraits and OperatorTraits requires that specializations of
these traits classes have been implemented for given template arguments. Belos provides the
following specializations of these traits classes:

• Epetra MultiVector and Epetra Operator (with scalar type double)

• Thyra::MultiVectorBase and Thyra::LinearOpBase (with arbitrary scalar type)
This allows Belos to be used with any classes that implement the abstract interfaces
provided by the Thyra package.

• Belos::MultiVec and Belos::Operator (with arbitrary scalar type)
This allows Belos to be used with any classes that implement the abstract base classes
Belos::MultiVec and Belos::Operator.

For user-specified classes that do not match one of the above, specializations of MultiVec-
Traits and OperatorTraits will need to be created by the user for use by Belos. Test routines
Belos::TestMultiVecTraits() and Belos::TestOperatorTraits() are provided by Belos
to help in testing user-developed adapters.

8.2 The Belos Linear Solver Framework

The goals of flexibility and efficiency can interfere with the goals of simplicity and ease of
use. For example, efficient memory use and low-level data access required in scientific codes

8.2. The Belos Linear Solver Framework 63

Method name Args Description
Clone X, n Creates a new empty multivector from X con-

taining n columns.
CloneCopy X Creates a new multivector from X with a copy

of all the vectors in X (deep copy).
CloneCopy X, index Creates a new multivector from X with only a

copy of the index vectors (deep copy).
CloneView X, index Creates a new multivector from X that shares

the index vectors from X (shallow copy).
GetVecLength X Returns the vector length of the multivector X.
GetNumberVecs X Returns the number of vectors in the multivector

X.
MvTimesMatAddMv X, Y , α, β Apply a SerialDenseMatrix M to another mul-

tivector X, Y ← αXM + βY .
MvAddMv X, Y , Z, α,

β
Perform Z ← αX + βY .

MvTransMv X, Y , α, C Compute the matrix C ← αXHY .
MvDot X, Y , d Compute the vector d where the components are

the individual dot-products of the i-th columns
of X and Y , i.e. d[i] = X[i]HY [i].

MvScale X, α Scale the columns of the multivector X by α.
MvNorm X, norm Compute the 2-norm of each individual vector

of X, norm[i] = ‖X[i]‖2.
SetBlock X, Y , index Copy the vectors in X to the subset of vectors

in Y indicated by index.
MvRandom X Replace the vectors in X with random vectors.
MvInit X, α Replace each element of X with α.
MvPrint X, os Print the multivector X to an output stream os.

Table 8.1: Methods required by Belos::MultiVecTraits interface.

can lead to complicated interfaces and violations of standard object-oriented development
practices. In Belos, this problem is addressed by providing a multi-tiered access strategy for
linear solver algorithms. Belos users have the choice of interfacing at one of two levels: either
working at a high-level with a linear solver manager or working at a low-level directly with
an iteration.

Consider as an example the conjugate gradient (CG) iteration. The essence of this itera-
tion can be distilled into the following steps:

1. apply operator A to current direction vector pi: Api = A ∗ pi

2. use Api to compute step length αi: αi = <ri,ri>
<pi,Api>

3. use αi and pi to compute approximate solution xi+1: xi+1 = xi + αi ∗ pi

4. compute new residual ri+1 using step length and Api: ri+1 = ri − αi ∗Api

64 Chapter 8. Iterative Solution of Linear Systems with Belos

5. compute improvement in the step βi using ri and ri+1: βi = <ri+1,ri+1>
<ri,ri>

6. use βi and ri+1 to compute the new direction vector pi+1: pi = ri+1 + βi ∗ pi

In implementing a CG solver, this iteration repeats until some stopping criterion has been
satisfied. Many valid stopping criteria exist, however, they are distinct from the essential
iteration as described above. A user wanting to perform CG iterations could ask the solver
to perform these iterations until a user-specified stopping criterion, like maximum number
of iterations or residual norm, was satisfied. This allows the user complete control over the
stopping criteria and leaves the iteration responsible for a relatively simple bit of state and
behavior.

This is the way that Belos has been designed. The iterations (encapsulating an iteration
kernel and the associated state) are derived classes of the abstract base class Belos::Iteration.
The goals of this class are three-fold:

• to define an interface used for checking the status of an iteration by a status test;

• to contain the iteration kernel associated with a particular linear solver;

• to contain the state associated with that iteration.

The status tests, assembled to describe a specific stopping criterion and queried by the iter-
ation, are represented as subclasses of Belos::StatusTest. The communication between status
test and iteration occurs inside of the iterate() method provided by each Belos::Iteration.
This code generally takes the form:

SomeIteration::iterate() {
while (statustest.checkStatus(this) != Passed) {
//
// perform iteration kernel
//

}
return; // return back to caller

}

Each Belos::StatusTest provides a method, checkStatus(), which through queries to the
methods provided by Belos::Iteration, determines whether the solver meets the criteria defined
by that particular status test. After an iteration returns from iterate(), the caller has the
option of accessing the state associated with the iteration and re-initializing it with a new
state.

While this method of interfacing with the iteration is powerful, it can be tedious. This
method requires that a user construct a number of support classes, in addition to managing
calls to Iteration::iterate(). The Belos::SolverManager class was developed to address
this need. A solver manager is a class that wraps around an iteration, providing additional
functionality while also handling lower-level interaction with the iteration that a user may
not wish to handle. Solver managers are intended to be easy to use, while still providing
the features and flexibility needed to solve real-world linear problems. For example, the
Belos::BlockCGSolMgr takes only two arguments in its constructor: a Belos::LinearProblem
specifying the linear problem to be solved and a Teuchos::ParameterList of options specific
to this solver manager. The solver manager instantiates an iteration, along with the status

8.3. Belos Classes 65

tests and other support classes needed by the iteration. To solve the linear problem, the
user simply calls the solve() method of the solver manager. The solver manager performs
repeated calls to the iterate() method, performs restarts or recycling, and places the final
solution into the linear problem.

Users therefore have a number of options for computing solutions to linear problems with
Belos:

• use an existing solver manager;
In this case, the user is limited to the functionality provided by the current linear solvers.

• develop a new solver manager around an existing iteration;
The user can extend the functionality provided by the iteration, specifying custom
configurations for status tests, orthogonalization, restarting, recycling, etc.

• develop a new iteration/solver manager;
The user can write an iteration that is not represented in Belos. The user still has
the benefit of the support classes provided by Belos, and the knowledge that the new
iteration / solver manager can be easily used by anyone already familiar with Belos.

8.3 Belos Classes

Belos is designed with extensibility in mind, so that users can augment the package with
any special functionality that they need. However, the released version of Belos provides
all functionality necessary for solving a wide variety of problems. This section lists and
briefly describes the current abstract classes found in Belos. Each subsection also includes
information on the derived classes provided by Belos.

Remark 14. Belos makes extensive use of the Teuchos utility classes, especially Teuchos::RCP
(Section 10.7) and Teuchos::ParameterList (Section 10.6). Users are encouraged to become
familiar with these classes and their correct usage.

8.3.1 Belos::LinearProblem

Belos::LinearProblem is a templated container for the components of a linear problem, as well
as the solutions. Both the linear problem and the linear solver in Belos are templated on the
scalar type, the multivector type and the operator type. Before declaring a linear problem,
users must choose classes to represent these entities. Having done so, they can begin to specify
the parameters of the linear problem using the Belos::LinearProblem set methods:

• setOperator - set the operator A for which the solutions will be computed

• setLHS - set the left-hand side (solution) vector X for the linear problem AX = B

• setRHS - set the right-hand side vector B for the linear problem AX = B

• setLeftPrec - set the left preconditioner for the linear problem

• setRightPrec - set the right preconditioner for the linear problem

• setHermitian - specify whether the problem is Hermitian

66 Chapter 8. Iterative Solution of Linear Systems with Belos

• setLabel - specify the label prefix used by the timers in this object

In addition to these set methods, Belos::LinearProblem defines a method setProblem() that
gives the class the opportunity to perform any initialization that may be necessary before the
problem is handed off to a linear solver, in addition to verifying that the problem has been
adequately defined.

For each of the set methods listed above, there is a corresponding get function. These
are the functions used the iterations and solver managers to get necessary information from
the linear problem.

8.3.2 Belos::Iteration

The Belos::Iteration class defines the basic interface that must be met by any iteration class in
Belos. The specific iterations are implemented as derived classes of Belos::Iteration. Table 8.2
lists the linear solver currently implemented in Belos.

Solver Description
CG A basic single-vector CG iteration for SPD linear problems.
BlockCG A block CG iteration for SPD linear problems.
BlockGmres A block GMRES iteration for non-Hermitian linear prob-

lems.
BlockFGmres A block flexible GMRES iteration for non-Hermitian linear

problems.
PseudoBlockGmres A simultaneous single-vector GMRES iteration for non-

Hermitian linear problems.
GCRODR A deflation, restarted GCRO iteration for non-Hermitian

linear problems.

Table 8.2: Iterations currently implemented in Belos.

The iteration interface provides two significant types of methods: status methods and
solver-specific state methods. The status methods are defined by the Belos::Iteration abstract
base class and represent the information that a generic status test can request from any linear
solver. A list of these methods is given in Table 8.3.

Method Description
getNumIters Get the current number of iterations.
resetNumIters Reset the number of iterations.
getNativeResiduals Get the most recent residual norms native to the iteration.
getCurrentUpdate Get the most recent solution update computed by the iter-

ation.

Table 8.3: A list of generic status methods provided by Belos::Iteration.

The class Belos::Iteration, like Belos::LinearProblem, is templated on the scalar type,
multivector type and operator type. The options for the iteration are passed in through the
constructor, defined by Belos::Iteration to have the following form:

8.3. Belos Classes 67

Iteration(
const Teuchos::RCP< LinearProblem<ST,MV,OP> > &problem,
const Teuchos::RCP< OutputManager<ST> > &printer,
const Teuchos::RCP< StatusTest<ST,MV,OP> > &tester,
const Teuchos::RCP< OrthoManager<ST,OP> > &ortho,
ParameterList ¶ms

);

These classes are used as follows:

• problem - the linear problem to be solved; the solver will get the operator and vectors
from here; see Section 8.3.1.

• printer - the output manager dictates verbosity level in addition to processing output
streams; see Section 8.3.6.

• tester - the status tester dictates when the solver should quit iterate() and return
to the caller; see Section 8.3.4.

• ortho - the orthogonalization manager defines the inner product and other concepts
related to orthogonality, in addition to performing these computations for the solver;
see Section 8.3.5.

• params - the parameter list specifies linear solver-specific options; see the documentation
for a list of options support by individual solvers.

An iteration class also specifies a concept of state, i.e. the current data associated with
the iteration. After declaring an iteration object, it is in an uninitialized state. For most
iterations, to be initialized means to be in a valid state, containing all of the information
necessary for performing an iteration step. Belos::Iteration provides two methods concerning
initialization: isInitialized() indicates whether the iteration is initialized or not, and
initialize() (with no arguments) instructs the iteration to initialize itself using the linear
problem.

To ensure that iterations can be used as efficiently as possible, the user needs access to
their state. To this end, each iteration provides low-level methods for getting and setting
their state:

• getState() - returns an iteration-specific structure with read-only pointers to the cur-
rent state of the iteration.

• initialize(...) - accepts an iteration-specific structure enabling the user to initialize
the iteration object with a particular state.

The combination of these two methods, along with the flexibility provided by status tests,
allows the user almost total control over linear solver iterations.

8.3.3 Belos::SolverManager

Using Belos by interfacing directly with the linear solver iterations is extremely powerful, but
can be more entailed than necessary. Solver managers provide a way for users to encapsulate

68 Chapter 8. Iterative Solution of Linear Systems with Belos

specific solving strategies inside of an easy-to-use class. Novice users may prefer to use existing
solver managers, while advanced users may prefer to write custom solver managers.

The Belos::SolverManager class provides a parameter list driven interface for solving linear
systems and, as such, has very few methods. Only two constructors are supported: a default
constructor and a constructor accepting a Belos::LinearProblem and a parameter list of solver
manager-specific options. If the default constructor is used, the Belos::LinearProblem and
parameter list can be passed in, post-construction, using the methods setProblem(...)
and setParameters(...), respectively. It is also possible to get the valid parameters and
current parameters from the solver manager by using the methods getValidParameters()
and getCurrentParameters(), respectively. Most importantly, there is a solve() method
that takes no arguments and returns either Belos::Converged or Belos::Unconverged. Consider
the following simple example code:

// create a linear problem
Teuchos::RCP< Belos::LinearProblem<ScalarType,MV,OP> > problem = ...;
// create a parameter list
Teuchos::RCP<Teuchos::ParameterList> params;
params->set(...);
// create a solver manager
Belos::BlockCGSolMgr<ScalarType,MV,OP> CGsolver(problem, params);
// solve the linear problem
Belos::ReturnType ret = CGsolver.solve();
// get the solution from the problem
Teuchos::RCP< MV > sol = problem->getLHS();

Remark 15. Errors in Belos are communicated via exceptions. This is outside the scope of
this tutorial; see the Belos documentation for more information.

As has been stated before, the goal of the solver manager is to create a linear solver it-
eration object, along with the necessary support objects. Another purpose of many solver
managers is to manage and initiate the repeated calls to the underlying iteration’s iterate()
method. For linear solver iterations that build a Krylov subspace to some maximum dimen-
sion (e.g., BlockGmres, BlockFGmres, etc.), the solver manager will also employ a strategy
for restarting the solver when the subspace is full. This is something for which multiple
approaches are possible. Also, there may be substantial flexibility in creating the support
classes (e.g., sort manager, status tests) for the solver. An aggressive solver manager could
even go so far as to construct a preconditioner for the linear problem, or switch its solution
technique based on convergence behavior.

These examples are meant to illustrate the flexibility that specific solver managers may
have in implementing the solve() routine. Some of these options might best be incorporated
into a single solver manager, which takes orders from the user via the parameter list. Some
of these options may better be contained in multiple solver managers, for the sake of code
simplicity. It is even possible to write solver managers that contain other solvers managers;
motivation for something like this would be to select the optimal solver manager at runtime
based on some expert knowledge, or to create a hybrid method which uses the output from
one solver manager to initialize another one.

8.3. Belos Classes 69

8.3.4 Belos::StatusTest

By this point in the tutorial, the purpose of the Belos::StatusTest should be clear: to give the
user or solver manager flexibility in stopping the linear solver iterations in order to interact
directly with the iteration.

Many reasons exist for why a user would want to stop the iteration from continuing:

• some convergence criterion has been satisfied and it is time to quit;

• some part of the current solution has reached a sufficient accuracy to removed from the
iteration;

• the solver has performed a sufficient or excessive number of iterations.

These are just some commonly seen reasons for ceasing the iteration, and each of these
can be so varied in implementation/parametrization as to require some abstract mechanism
controlling the iteration.

The following is a list of Belos-provided status tests:

• Belos::StatusTestCombo - this status test allows for the boolean combination of other
status tests, creating near unlimited potential for complex status tests.

• Belos::StatusTestOutput - this status test acts as a wrapper around another status test,
allowing for printing of status information on a call to checkStatus()

• Belos::StatusTestMaxIters - this status test monitors the number of iterations performed
by the solver; it can be used to halt the solver at some maximum number of iterations
or even to require some minimum number of iterations.

• Belos::StatusTestGenResNorm - this status test allows the user to construct one of a
family of residual tests to monitor the residual norms of the current iterate.

• Belos::StatusTestImpResNorm - this status test monitors the implicit residual norm
(e.g., native residual available through GMRES) and checks for loss of accuracy.

8.3.5 Belos::OrthoManager

Orthogonalization and orthonormalization are commonly performed computations in iterative
linear solvers; in fact, for some linear solvers, they represent the dominant cost. Different
scenarios may require different approaches (e.g., Euclidean inner product versus a weighted
inner product, full versus partial orthogonalization). Combined with the plethora of available
methods for performing these computations, Belos has left as much leeway to the users as
possible.

Orthogonalization of multivectors in Belos is performed by derived classes of the abstract
class Belos::OrthoManager. This class provides five methods:

• innerProd(X,Y,Z) - performs the inner product defined by the manager.

• norm(X) - computes the norm induced by innerProd().

• project(X,C,Q) - given an orthonormal basis Q, projects X onto to the space per-
pindicular to colspan(Q), optionally returning the coefficients of X in Q.

70 Chapter 8. Iterative Solution of Linear Systems with Belos

• normalize(X,B) - returns an orthonormal basis for colspan(X), optionally returning
the coefficients of X in the computed basis.

• projectAndNormalize(X,C,B,Q) - computes an orthonormal basis for subspace
colspan(X) − colspan(Q), optionally returning the coefficients of X in Q and the new
basis.

It should be noted that a call to projectAndNormalize() is not necessarily equivalent
to a call to project() followed by normalize(). This follows from the fact that, for some
orthogonalization managers, a call to normalize() may augment the column span of a rank-
deficient multivector in order to create an orthonormal basis with the same number of columns
as the input multivector. In this case, the code

orthoMgr.project(X,C,Q);
orthoMgr.normalize(X,B);

could result in an orthonormal basis X that is not orthogonal to the basis in Q.
Belos provides three orthogonalization managers:

• Belos::DGKSOrthoManager - performs orthogonalization using classical Gram-Schmidt
with a possible correction step.

• Belos::ICGSOrthoManager - performs orthogonalization using iterated classical Gram-
Schmidt.

• Belos::IMGSOrthoManager - performs orthogonalization using iterated modified Gram-
Schmidt.

More information on these orthogonalization managers is available in the Belos documen-
tation.

8.3.6 Belos::OutputManager

The output manager is a concrete class in Belos and exists to provide flexibility with regard
to the verbosity of the linear solver. The output manager has two primary concerns: what
output is printed and where the output is printed to. When working with the output manager,
output is classified into one of the message types from Table 8.4.

The output manager in Belos provides the following output-related methods:

• bool setVerbosity (MsgType type) - Set the type of messages we need to print out
information for.

• bool setOStream (const Teuchos::RCP<std::ostream> &os) - Set the output stream
where information should be sent.

• bool isVerbosity (MsgType type) - Find out whether we need to print out informa-
tion for this message type.

• void print (MsgType type, const string output) - Send output to the output
manager.

• ostream & stream (MsgType type) - Create a stream for outputting to.

8.4. Using the Belos adapter to Epetra 71

Message type Description
Errors Errors (always printed)
Warnings Warning messages
IterationDetails Approximate eigenvalues, errors
OrthoDetails Orthogonalization/orthonormalization checking
FinalSummary Final computational summary (usually from

SolverManager::solve())
TimingDetails Timing details
StatusTestDetails Status test details
Debug Debugging information

Table 8.4: Message types used by Belos::OutputManager.

The output manager is meant to ease some of the difficulty associated with I/O in a dis-
tributed programming environment. For example, consider some debugging output requiring
optional computation. For reasons of efficiency, we may want to perform the computation
only if debugging is requested; i.e., isVerbosity(Belos::Debug) == true. However, while
we need all nodes to enter the code block to perform the computation, we probably want only
one of them to print the output. For the Belos::OutputManager, the output corresponding
to the verbosity level of the manager is sent to the output stream only on the master node;
the output for other nodes is neglected.

8.4 Using the Belos adapter to Epetra

The Epetra package provides the underlying linear algebra foundation for many Trilinos
solvers. By using the Belos adapter to Epetra, users not only avoid the trouble of implement-
ing their own multivector and operator classes, but they also gain the ability to utilize any
other Trilinos package which recognizes Epetra classes (such as AztecOO, IFPACK, ML, and
others).

In order to use the Belos adapter to Epetra, users must include the following file:

#include "BelosEpetraAdapter.hpp"

This file simply defines specializations of the Belos::MultiVecTraits and Belos::OperatorTraits
classes, while also including the Epetra header files defining the multivector and operator
classes.

Because Epetra makes exclusive use of double precision arithmetic, Epetra Operator and
Epetra MultiVector are used only with scalar type double. For brevity, it is useful to declare
type definitions for these classes:

typedef double ST;
typedef Epetra_MultiVector MV;
typedef Epetra_Operator OP;

Multivectors will be of type MV:

Teuchos::RCP<MV> X
= Teuchos::rcp(new MV(...));

72 Chapter 8. Iterative Solution of Linear Systems with Belos

Operators can be any subclass of OP, for example, an Epetra CrsMatrix:

Teuchos::RCP<OP> A
= Teuchos::rcp(new Epetra_CrsMatrix(...));

The Belos interface to Epetra defines a specialization of Belos::MultiVecTraits for Epe-
tra MultiVector and a specialization of Belos::OperatorTraits for Epetra Operator applied to
Epetra MultiVector. Therefore, we can now specify a linear solver and preconditioner utiliz-
ing these computational classes. An example of defining and solving a linear problem using
a Belos linear solver is given in the next section.

8.5 Defining and Solving a Linear Problem

This section gives sample code for solving a symmetric positive definite (SPD) linear problem
using the block CG solver manager, Belos::BlockCGSolMgr. The example code in this section
comes from the Didasko example didasko/examples/belos/ex1.cpp.

The first step in solving a linear problem is to define the problem using the Belos::LinearProblem
class. Assume we have chosen classes to represent our scalars, multivectors and operators as
ST, MV and OP, respectively. Given an operator A, a multivector X containing the initial guess,
and a multivector B containing the right-hand side, all wrapped in Teuchos::RCP, we would
define the linear problem as follows:

Teuchos::RCP< LinearProblem<ST,MV,OP> > myProblem
= Teuchos::rcp(new LinearProblem<ST,MV,OP>(A,X,B));

myProblem->setHermitian();
bool ret = myProblem->setProblem();
if (ret != true) {

// there should be no error in this example :)
}

The first line creates a Belos::LinearProblem object and wraps it in a Teuchos::RCP
(Section 10.7). The second line specifies the symmetry of the linear problem. The third line
signals that we have finished setting up the linear problem. This step must be completed
before attempting to solve the problem; failure to do so will result in the solver manager
throwing an exception.

Next, we create a parameter list wrapped in a Teuchos::RCP to specify the parameters
for the solver manager:

int verb = Belos::Warnings + Belos::Errors
+ Belos::FinalSummary + Belos::TimingDetails;

Teuchos::RCP<Teuchos::ParameterList> myPL;
myPL->set("Verbosity", verb);
myPL->set("Block Size", 4);
myPL->set("Maximum Iterations", 100);
myPL->set("Convergence Tolerance", 1.0e-8);

Here, we have asked for the linear solver to output information regarding errors and
warnings, as well as to provide a final summary after completing all iterations and print
the timing information collected during the solve. We have also specified the tolerance for

8.5. Defining and Solving a Linear Problem 73

convergence testing (used to construct a status test); the block size; and the maximum number
of iterations (used to construct a status test). This solver manager permits other options as
well, affecting the block size size as well as the output; see the Belos documentation.

We now have all of the information needed to declare the solver manager and solve the
problem:

Belos::BlockCGSolMgr<ST,MV,OP> mySolver(myProblem, myPL);

The linear problem is solved with the instruction

Belos::ReturnType solverRet = mySolver.solve();

The return value of the solver indicates whether the algorithm succeeded or not; i.e.,
whether the requested residual tolerance was achieved in the alotted number of iterations.
Output from solve() routine in this example might look as follows:

Passed.......OR Combination ->
OK...........Number of Iterations = 21 < 100
Converged....(2-Norm Imp Res Vec) / (2-Norm Res0)

residual [0] = 6.38815e-09 < 1e-08
residual [1] = 9.08579e-09 < 1e-08
residual [2] = 9.26932e-09 < 1e-08
residual [3] = 4.43278e-09 < 1e-08

==

TimeMonitor Results

Timer Name Local time (num calls)
--
Belos: Operation Op*x 0.000583 (22)
Belos: Operation Prec*x 0 (0)
Epetra_CrsMatrix::Multiply(TransA,X,Y) 0.000453 (22)
Belos: Orthogonalization 0.006996 (23)
Belos: BlockCGSolMgr total solve time 0.01208 (1)
==

The solution vector can be retrieved from the linear problem (where they were stored by
the solver manager) as follows:

Teuchos::RCP<MV> sol = myProblem->getLHS();

Then the residual can be checked using the computed solution, resulting in output that should
look like:

**
Results (outside of linear solver)

--
Linear System Relative Residual

--

74 Chapter 8. Iterative Solution of Linear Systems with Belos

1 6.388147e-09
2 9.085794e-09
3 9.269324e-09
4 4.432775e-09

**

9
Incomplete Factorizations with
IFPACK
Marzio Sala, Michael Heroux, David Day

IFPACK provides a suite of object-oriented algebraic preconditioners for the solution
of preconditioned iterative solvers. IFPACK offers a variety of overlapping (one-level)
Schwarz preconditioners. The package uses Epetra for basic matrix-vector calculations,
and accepts user matrices via an abstract matrix interface. A concrete implementation
for Epetra matrices is provided. The package separates graph construction from factor-
ization, improving performance substantially compared to other factorization packages.
In this Chapter we discuss the use of IFPACK objects as preconditioners for AztecOO
solvers. Specifically we present:

• Parallel distributed memory issues (in Section 9.2).

• Incomplete factorizations and notation (in Section 9.1).

• How to compute incomplete Cholesky factorizations (in Section 9.3).

• IFPACK’s RILU-type factorizations (in Section 9.4).

9.1 Theoretical Background

The aim of this section is to define concepts associated with incomplete factorization methods
and establish our notation. This section is not supposed to be exhaustive, nor complete on
this subject. The reader is referred to the existing literature for a comprehensive presentation.

A broad class of effective preconditioners is based on incomplete factorization of the linear
system matrix. Such preconditioners are often referred to as incomplete lower/upper (ILU)
preconditioners. ILU preconditioning techniques lie between direct and iterative methods
and provide a balance between reliability and numerical efficiency. ILU preconditioners are
constructed in the factored form P = L̃Ũ , with L̃ and Ũ being lower and upper triangular
matrices. Solving with P involves two triangular solutions.

ILU preconditioners are based on the observation that, although most matrices A admit
an LU factorization A = LU , where L is (unit) lower triangular and U is upper triangular,
the factors L and U often contain too many nonzero terms, making the cost of factorization
too expensive in time or memory use, or both. One type of ILU preconditioner is ILU(0),

75

76 Chapter 9. Incomplete Factorizations with IFPACK

which is defined as proceeding through the standard LU decomposition computations, but
keeping only those terms in L̃ that correspond to nonzero terms in the lower triangle of A
and similarly keeping only those terms in Ũ that correspond to nonzero terms in the upper
triangle of A. Although effective, in some cases the accuracy of the ILU(0) may be insufficient
to yield an adequate rate of convergence. More accurate factorizations will differ from ILU(0)
by allowing some fill-in. The resulting class of methods is called ILU(k), where k is the level-
of-fill. A level-of-fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the level-of-fill. The level-of-fill should be indicative of the size
of the element: the higher the level-of-fill, the smaller the elements.

Other strategies consider dropping by value – for example, dropping entries smaller than
a prescribed threshold. Alternative dropping techniques can be based on the numerical size
of the element to be discarded. Numerical dropping strategies generally yield more accurate
factorizations with the same amount of fill-in as level-of-fill methods. The general strategy is
to compute an entire row of the L̃ and Ũ matrices, and then keep only a certain number of
the largest entries. In this way, the amount of fill-in is controlled; however, the structure of
the resulting matrices is undefined. These factorizations are usually referred to as ILUT, and
a variant which performs pivoting is called ILUTP.

When solving a single linear system, ILUT methods can be more effective than ILU(k).
However, in many situations a sequence of linear systems must be solved where the pattern
of the matrix A in each system is identical but the values of changed. In these situations,
ILU(k) is typically much more effective because the pattern of ILU(k) will also be the same
for each linear system and the overhead of computing the pattern is amortized.

9.2 Parallel Incomplete Factorizations

Parallel direct sparse solvers that compute the complete factorization A = LU are effective
on parallel computers. However, the effective scalability of these solvers is typically limited
to a speedup of order ten, regardless of the number of processors used. Also, it is typically
the factorization (constructing L and U) that exhibits the best parallel speedup. The forward
and back triangular solves typically exhibit very poor parallel speedup.

The situation for ILU preconditioners is even worse. Complete factorizations can scale
well because of very important graph properties that can be determined at low cost. ILU
factorizations do not have the same properties, so predicting fill-in across the parallel machine
is not practically possible. Also, because ILU preconditioners require repeated forward and
back solves, they are more affected by the poor scalability of these operations.

Because ILU preconditioners do not scale well on parallel computers, a common practice
is to perform local ILU factorizations. In this situation, each processor computes a factoriza-
tion of a subset of matrix rows and columns independently from all other processors. This
additional layer of approximation leads to a block Jacobi type of preconditioner across pro-
cessors, where each block is solved using an ILU preconditioner. The difficulty with this type
of preconditioner is that it tends to become less robust and require more iterations as the
number of processors used increases. This effect can be offset to some extent by allowing
overlap. Overlap refers to having processors redundantly own certain rows of the matrix for
the ILU factorization. Level-1 overlap is defined so that a processor will include rows that
are part of its original set. In addition, if row i is part of its original set and row i of A has a
nonzero entry in column j, then row j will also be included in the factorization on that pro-

9.3. Incomplete Cholesky Factorizations 77

cessor. Other levels of overlap are computed recursively. IFPACK supports an arbitrary level
of overlap. However, level-1 is often most effective. Seldom more than 3 levels are needed.

9.3 Incomplete Cholesky Factorizations

Recall that if a matrix is symmetric positive definite, it admits a Cholesky factorization of
the form A = LLT , where L is lower triangular. Ifpack CrsIct is a class for constructing
and using incomplete Cholesky factorizations of an Epetra CrsMatrix. It is built in part on
top of the ICT preconditioner developed by Edmond Chow at Lawrence Livermore National
Laboratory [LSC04]. Specific factorizations depend on several parameters:

• Maximum number of entries per row/column. The factorization will contain at most
this number of nonzero elements in each row/column;

• Diagonal perturbation. By default, the factorization will be computed on the input
matrix. However, it is possible to modify the diagonal entries of the matrix to be fac-
torized, via functions SetAbsoluteThreshold() and SetRelativeThreshold(). Refer
to the IFPACK’s documentation for more details.

It is easy to have IFPACK compute the incomplete factorization. First, define an If-
pack CrsIct object,

Ifpack_CrsIct * ICT = NULL;
ICT = Ifpack_CrsIct(A,DropTol,LevelFill);

where A is an Epetra CrsMatrix (already FillComplete’d), and DropTop and LevelFill are
the drop tolerance and the level-of-fill, respectively. Then, we can set the values and compute
the factors,

ICT->InitValues(A);
ICT->Factor();

IFPACK can compute the estimation of the condition number

cond(LiUi) ≈ ‖(LU)−1e‖∞,

where e = (1, 1, . . . , 1)T . (More details can be found in the IFPACK documentation.) This
estimation can be computed as follows:

double Condest;
ICT->Condest(false,Condest);

Please refer to file didasko/examples/ifpack/ex1.cpp for a complete example of incomplete
Cholesky factorization.

9.4 RILUK Factorizations

IFPACK implements various incomplete factorization for non-symmetric matrices. In this
Section, we will consider the Epetra CrsRiluk class, that can be used to produce RILU factor-
ization of a Epetra CrsMatrix. The class required an Ifpack OverlapGraph in the construction
phase. This means that the factorization is split into two parts:

78 Chapter 9. Incomplete Factorizations with IFPACK

1. Definition of the level filled graph;

2. Computation of the factors.

This approach can significantly improve the performances of code, when an ILU preconditioner
has to be computed for several matrices, with different entries but with the same sparsity
pattern. An Ifpack IlukGraph object of an Epetra matrix A can be constructed as follows:

Ifpack_IlukGraph Graph =
Ifpack_IlukGraph(A.Graph(),LevelFill,LevelOverlap);

Here, LevelOverlap is the required overlap among the subdomains.
A call to ConstructFilledGraph() completes the process.

Remark 16. An Ifpack IlukGraph object has two Epetra CrsGraph objects, containing the Li

and Ui graphs. Thus, it is possible to manually insert and delete graph entries in Li and Ui

via the Epetra CrsGraphInsertIndices and RemoveIndices functions. However, in this case
FillComplete must be called before the graph is used for subsequent operations.

At this point, we can create an Ifpack CrsRiluk object,

ILUK = Ifpack_CrsRiluk(Graph);

This phase defined the graph for the incomplete factorization, without computing the actual
values of the Li and Ui factors. Instead, this operation is accomplished with

int initerr = ILUK->InitValues(A);

The ILUK object can be used with AztecOO simply setting

solver.SetPrecOperator(ILUK);

where solver is an AztecOO object. The example in
didasko/examples/ifpack/ex2.cpp shows the use of the Ifpack CrsRiluk class.

The application of the incomplete factors to a global vector, z = (LiU
−1
i)r, results in

redundant approximation for any element of z that correspond to rows that are part of
more than one local ILU factor. The OverlapMode defines how those redundant values are
managed. OverlapMode is an Epetra CombinedMode enum, that can assume the following
values: Add, Zero, Insert, Average, AbxMax. The default is to zero out all the values of
z for rows that were not part of the original matrix row distribution.

9.5 Concluding Remarks on IFPACK

More documentation on the IFPACK package can be found in [SH05a]

10
The Teuchos Utility Classes

Heidi Thornquist

Teuchos (pronounced “te-fos”) is a collection of portable C++ tools that facilitate the
development of scientific codes. Only a few of the many tools in Teuchos are mentioned
in this section. For more details on all of the capabilities provided by Teuchos, please refer
to the online documentation (http://trilinos.sandia.gov/packages/teuchos).
Teuchos classes have been divided between a “standard” build and an “extended” build.
The “standard” build contains the general purpose templated tools like BLAS/LAPACK
wrappers, parameter lists, a command-line parser, serial dense matrices, timers, flop
counters, and a reference-counted pointer class. These tools are built by default
when Teuchos is enabled using the configure option --enable-teuchos. The “ex-
tended” build contains more special purpose tools like XML parsing and MPI commu-
nicators, which can be included in the Teuchos library by using the configure option
--enable-teuchos-extended.

10.1 Introduction

In this Chapter, we will present the following “standard” build classes:

• Teuchos::ScalarTraits class (Section 10.2): The ScalarTraits class provides a basic
interface to scalar types (float, double, complex<float>, complex<double>) that is used
by the templated computational classes within Teuchos. It is the mechanism by which
Teuchos’ capabilities can be extended to support arbitrary precisions.

• Teuchos::SerialDenseMatrix class (Section 10.3): The SerialDenseMatrix is a tem-
plated version of the Epetra_SerialDenseMatrix class that is most often used to in-
terface with the templated BLAS/LAPACK wrappers.

• Teuchos::BLAS class (Section 10.4): The BLAS class provides templated wrappers for
the native BLAS library and can be extended to support arbitrary precision computa-
tions.

• Teuchos::LAPACK class (Section 10.5): The LAPACK class provides templated wrap-
pers for the native LAPACK library.

• Teuchos::ParameterList class (Section 10.6): ParameterList is a container that can
be used to group all the parameters required by a given piece of code.

79

80 Chapter 10. The Teuchos Utility Classes

• Teuchos::RCP class (Section 10.7): RCP is a smart reference-counted pointer class,
which provides a functionality similar to the garbage collector of Java.

• Teuchos::TimeMonitor class (Section 10.8): TimeMonitor is a timing class that starts
a timer when it is initialized and stops it when the destructor is called on the class.

• Teuchos::CommandLineProcessor class (Section 10.9): CommandLineProcessor is a
class that helps parse command line input arguments from (argc,argv[]).

10.2 Teuchos::ScalarTraits

The ScalarTraits class provides a basic interface to scalar types (float, double, complex<float>,
complex<double>) that is used by the templated computational classes within Teuchos. This
interface includes a definition of the magnitude type and methods for obtaining random num-
bers, representations of zero and one, the square root, and machine-specific parameters. The
Teuchos classes that utilize this scalar traits mechanism are Teuchos::SerialDenseMatrix,
Teuchos::BLAS, and Teuchos::LAPACK.

ScalarTraits enables the extension of Teuchos’ computational capabilities to any scalar
type that can support its basic interface. In particular, this interface can be used for arbitrary
precision scalar types. An interface to the arbitrary precision library ARPREC [BHLT02]
is available if Teuchos is configured with --enable-teuchos-arprec. Teuchos must also
be configured with the local ARPREC library paths (--with-libs, --with-incdirs, and
--with-libdirs). To obtain more information on ARPREC or download the source code,
see http://crd.lbl.gov/∼dhbailey/mpdist/.

Remark 17. To enable complex arithmetic (complex<float> or complex<double>) support in
ScalarTraits or any dependent classes, configure Teuchos with --enable-teuchos-complex.

10.3 Teuchos::SerialDenseMatrix

Teuchos::SerialDenseMatrix is a templated version of the SerialDenseMatrix class in Epetra
(Chapter 3). It is most useful for interfacing with the templated BLAS and LAPACK wrap-
pers, which will be discussed in Sections 10.4 and 10.5. However, by enabling the simple
construction and manipulation of small dense matrices, the SerialDenseMatrix class has also
been used as an independent tool in many Trilinos packages.

Teuchos::SerialDenseMatrix provides a serial interface to a small dense matrix of tem-
plated scalar type. This means a SerialDenseMatrix object can be created for any scalar
type supported by Teuchos::ScalarTraits (Section 10.2). Boundschecking can be enabled for
this class by configuring Teuchos with --enable-teuchos-abc. An exception will be thrown
every time a matrix bound is violated by any method. This incurs a lot of overhead for this
class, so boundschecking is only recommended as a debugging tool.

To use the Teuchos::SerialDenseMatrix class, include the header:

#include "Teuchos_SerialDenseMatrix.hpp"

Creating a double-precision matrix can be done in several ways:

10.3. Teuchos::SerialDenseMatrix 81

// Create an empty matrix with no dimension
Teuchos::SerialDenseMatrix<int,double> Empty_Matrix;
// Create an empty 3x4 matrix
Teuchos::SerialDenseMatrix<int,double> My_Matrix(3, 4);
// Basic copy of My_Matrix
Teuchos::SerialDenseMatrix<int,double> My_Copy1(My_Matrix),
// (Deep) Copy of principle 3x3 sub-matrix of My_Matrix

My_Copy2(Teuchos::Copy, My_Matrix, 3, 3),
// (Shallow) Copy of 2x3 sub-matrix of My_Matrix

My_Copy3(Teuchos::View, My_Matrix, 2, 3, 1, 1);

The matrix dimensions and strided storage information can be obtained:

int rows = My_Copy3.numRows(); // number of rows
int cols = My_Copy3.numCols(); // number of columns
int stride = My_Copy3.stride(); // storage stride

Matrices can change dimension:

Empty_Matrix.shape(3, 3); // size non-dimensional matrices
My_Matrix.reshape(3, 3); // resize matrices and save values

Filling matrices with numbers can be done in several ways:

My_Matrix.random(); // random numbers
My_Copy1.putScalar(1.0); // every entry is 1.0
My_Copy2(1,1) = 10.0; // individual element access
Empty_Matrix = My_Matrix; // copy My_Matrix to Empty_Matrix

Basic matrix arithmetic can be performed:

Teuchos::SerialDenseMatrix<int,double> My_Prod(3, 2);
// Matrix multiplication (My_Prod = 1.0*My_Matrix*My_Copy^T)
My_Prod.multiply(Teuchos::NO_TRANS, Teuchos::TRANS,

1.0, My_Matrix, My_Copy3, 0.0);
My_Copy2 += My_Matrix; // Matrix addition
My_Copy2.scale(0.5); // Matrix scaling

The pointer to the array of matrix values can be obtained:

double* My_Array = My_Matrix.values(); // pointer to matrix values
double* My_Column = My_Matrix[2]; // pointer to third column values

The norm of a matrix can be computed:

double norm_one = My_Matrix.normOne(); // one norm
double norm_inf = My_Matrix.normInf(); // infinity norm
double norm_fro = My_Matrix.normFrobenius(); // frobenius norm

Matrices can be compared:

// Check if the matrices are equal in dimension and values
if (Empty_Matrix == My_Matrix) {
cout<< "The matrices are the same!" <<endl;

}
// Check if the matrices are different in dimension or values
if (My_Copy2 != My_Matrix) {
cout<< "The matrices are different!" <<endl;

}

82 Chapter 10. The Teuchos Utility Classes

A matrix can be sent to the output stream:

cout<< My_Matrix << endl;

This section presents examples of all the methods in the Teuchos::SerialDenseMatrix
class and can be found in didasko/examples/teuchos/ex1.cpp. There is also a specializa-
tion of this class for serial dense vectors that includes additional creation, accessor, arithmetic,
and norm methods (Teuchos::SerialDenseVector).

10.4 Teuchos::BLAS

The Teuchos::BLAS class provides templated wrappers for the native BLAS library. This class
has been written to facilitate the interface between C++ codes and BLAS, which are written
in Fortran. Unfortunately, the interface between C++ and Fortran function calls is not
standard across all computer platforms. The Teuchos::BLAS class provides C++ wrappers
for BLAS kernels that are specialized during the Teuchos configuration. This insulates the
rest of Teuchos and its users from the details of the Fortran to C++ translation.

The Teuchos::BLAS class provides C++ wrappers for a substantial subset of the BLAS
kernels (Figure 10.1). The native BLAS library implementations of those kernels will be
used for the standard scalar types (float, double, complex<float>, complex<double>). How-
ever, Teuchos::BLAS also has a templated version of each of these kernels. Paired with
Teuchos::ScalarTraits (Section 10.2), the Teuchos::BLAS class can be extended to pro-
vide arbitrary precision computations. To use the Teuchos::BLAS class, include the header:

#include "Teuchos_BLAS.hpp"

Creating an instance of the BLAS class for double-precision kernels looks like:

Teuchos::BLAS<int, double> blas;

This instance provides the access to all the BLAS kernels listed in Figure 10.1:

const int n = 10;
double alpha = 2.0;
double x[n];
for (int i=0; i<n; i++) { x[i] = i; }
blas.SCAL(n, alpha, x, 1);
int max_idx = blas.IAMAX(n, x, 1);
cout<< "The index of the maximum magnitude entry of x[] is the "

<< max_idx <<"-th and x[" << max_idx-1 << "] = "<< x[max_idx-1]
<< endl;

This is a small usage example, but its purpose is to illustrate that any of the supported
BLAS kernels is a method of the Teuchos::BLAS class. This example can be found in
didasko/examples/teuchos/ex2.cpp.

10.5 Teuchos::LAPACK

The Teuchos::LAPACK class provides templated wrappers for the native LAPACK library.
This class has been written to facilitate the interface between C++ codes and BLAS, which
are written in Fortran. Unfortunately, the interface between C++ and Fortran function calls

10.5. Teuchos::LAPACK 83

BLAS Kernel Description
ROTG Computes a Givens plane rotation
SCAL Scale a vector by a constant
COPY Copy one vector to another
AXPY Add one scaled vector to another
ASUM Sum the absolute values of the vector entries
DOT Compute the dot product of two vectors
NRM2 Compute the 2-norm of a vector
IAMAX Determine the index of the largest magnitude entry of a vector
GEMV Add a scaled matrix-vector product to another scaled vector
TRMV Replaces a vector with its upper/lower-triangular matrix-vector product
GER Updates a matrix with a scaled, rank-one outer product
GEMM Add a scaled matrix-matrix product to another scaled matrix
SYMM Add a scaled symmetric matrix-matrix product to another scaled matrix
TRMM Add a scaled upper/lower-triangular matrix-matrix product to another scaled matrix
TRSM Solves an upper/lower-triangular linear system with multiple right-hand sides

Figure 10.1: BLAS kernels supported by Teuchos::BLAS

is not standard across all computer platforms. The Teuchos::LAPACK class provides C++
wrappers for LAPACK routines that are specialized during the Teuchos configuration. This
insulates the rest of Teuchos and its users from the details of the Fortran to C++ translation.

Teuchos::LAPACK is a serial interface only, as LAPACK functions are. Users interested
in the parallel counterpart of LAPACK, ScaLAPACK, can use the Amesos package; see
Chapter 12.

The Teuchos::LAPACK class provides C++ wrappers for a substantial subset of the LA-
PACK routines (Figure 10.2). The native LAPACK library implementations of those kernels
will be used for the standard scalar types (float, double, complex<float>, complex<double>).
Unlike Teuchos::BLAS, the Teuchos::LAPACK class does not have a templated version of these
routines at this time, so it cannot offer arbitrary precision computations.

To use the Teuchos::LAPACK class, include the header:

#include "Teuchos_LAPACK.hpp"

Creating an instance of the LAPACK class for double-precision routines looks like:

Teuchos::LAPACK<int, double> lapack;

This instance provides the access to all the LAPACK routines listed in Figure 10.2:

Teuchos::SerialDenseMatrix<int,double> My_Matrix(4,4);
Teuchos::SerialDenseVector<int,double> My_Vector(4);
My_Matrix.random();
My_Vector.random();

// Perform an LU factorization of this matrix.
int ipiv[4], info;
char TRANS = ’N’;
lapack.GETRF(4, 4, My_Matrix.values(), My_Matrix.stride(), ipiv, &info);

// Solve the linear system.
lapack.GETRS(TRANS, 4, 1, My_Matrix.values(), My_Matrix.stride(),

ipiv, My_Vector.values(), My_Vector.stride(), &info);

84 Chapter 10. The Teuchos Utility Classes

This small example illustrates how easy it is to use the Teuchos::LAPACK class. Further-
more, it also exhibits the compatibility of the Teuchos::SerialDenseMatrix and Teuchos::-
SerialDenseVector classes with the Teuchos::LAPACK class. This example can be found in
didasko/examples/teuchos/ex3.cpp.

10.5. Teuchos::LAPACK 85

LAPACK Routine Description

POTRF Computes Cholesky factorization of a real symmetric positive definite (SPD) matrix.

POTRS Solves a system of linear equations where the matrix has been factored by POTRF.

POTRI Computes the inverse of a real SPD matrix after its been factored by POTRF.

POCON Estimates the reciprocal of the condition number (1-norm) of a real SPD matrix
after its been factored by POTRF.

POSV Computes the solution to a real system of linear equations where the matrix is SPD.

POEQU Computes row and column scaling or equilibrating a SPD matrix and reduce
its condition number.

PORFS Improves the computed solution to a system of linear equations where the matrix is SPD.

POSVX Expert SPD driver: Uses POTRF/POTRS to compute the solution to a real system of
linear equations where the matrix is SPD. The system can be equilibrated (POEQU) or
iteratively refined (PORFS) also.

GELS Solves and over/underdetermined real linear system.

GETRF Computes an LU factorization of a general matrix using partial pivoting.

GETRS Solves a system of linear equations using the LU factorization computed by GETRF.

GETRI Computes the inverse of a matrix using the LU factorization computed by GETRF.

GECON Estimates the reciprocal of the condition number of a general matrix in either
the 1-norm or ∞-norm using the LU factorization computed by GETRF.

GESV Computes the solution of a linear system of equations.

GEEQU Computes row and column scaling for equilibrating a linear system, reducing its
condition number.

GERFS Improves the computed solution to a system of linear equations and provides error
bounds and backward error estimates for the solution [Use after GETRF/GETRS].

GESVX Expert driver: Uses GETRF/GETRS to compute the solution to a real system of linear
equations, returning error bounds on the solution and a condition estimate.

GEHRD Reduces a real general matrix to upper Hessenberg form by orthogonal similarity
transformations

HSEQR Compute the eigenvalues of a real upper Hessenberg matrix and, optionally, the
Schur decomposition.

GEES Computes the real Schur form, eigenvalues, and Schur vectors of a real nonsymmetric
matrix.

GEEV Computes the eigenvalues and, optionally, the left and/or right eigenvectors
of a real nonsymmetric matrix.

ORGHR Generates a real orthogonal matrix which is the product of the elementary reflectors
computed by GEHRD.

ORMHR Overwrites the general real matrix with the product of itself and the elementary
reflectors computed by GEHRD.

TREVC Computes some or all of the right and/or left eigenvectors of a real upper
quasi-triangular matrix.

TREXC Reorders the real Schur factorization of a real matrix via orthogonal similarity
transformations.

LARND Returns a random number from a uniform or normal distribution.

LARNV Returns a vector of random numbers from a chosen distribution.

LAMCH Determines machine parameters for floating point characteristics.

LAPY2 Computes sqrt (x2 + y2) safely, to avoid overflow.

Figure 10.2: LAPACK routines supported by Teuchos::LAPACK

86 Chapter 10. The Teuchos Utility Classes

10.6 Teuchos::ParameterList

The Teuchos::ParameterList class is a C++ container of <key, value> pairs, where the key
is a character string (std::string) and the value can be almost any type of C++ object.
The ability to hold almost any type of C++ object as a value in the same list makes this
class very useful for storing parameters. This parameter list can then be passed to an object,
like an iterative linear solver, which will use the information to define its behavior.

The Teuchos::ParameterList is currently being used by several Trilinos packages. For
instance, all Amesos objects (see Chapter 12) and the smoothed aggregation preconditioning
object ML_Epetra::MultiLevelPreconditioner (see Section 11.4) are configured through a
Teuchos::ParameterList.

Remark 18. The parameter list stores a copy of the input object if it passed by reference. If
the list is passed a pointer to an object, only the pointer is copied and not the object that it
points to.

To use the Teuchos::ParameterList class, include the header:

#include "Teuchos_ParameterList.hpp"

Creating an empty parameter list looks like:

Teuchos::ParameterList My_List;

Setting parameters in this list can be easily done:

My_List.set("Max Iters", 1550);
My_List.set("Tolerance", 1e-10);
My_List.set("Solver", "GMRES");

The templated “set” method should cast the input value to the correct data type. However,
in the case where the compiler is not casting the input value to the expected data type, an
explicit cast can be used with the “set” method:

My_List.set("Tolerance", (float)(1e-10));

A hierarchy of parameter lists can be constructed using Teuchos::ParameterList. This
means another parameter list is a valid value in any parameter list. To create a sublist in a
parameter list and obtain a reference to it:

Teuchos::ParameterList& Prec_List = My_List.sublist("Preconditioner");

Now this parameter list can be filled with values:

Prec_List.set("Type", "ILU");
Prec_List.set("Drop Tolerance", 1e-3);

The parameter list can be queried about the existence of a parameter, sublist, or type:

// Has a solver been chosen?
bool solver_defined = My_List.isParameter("Solver");
// Has a preconditioner been chosen?
bool prec_defined = My_List.isSublist("Preconditioner");
// Has a tolerance been chosen and is it a double-precision number?
bool tol_double = My_List.template isType<double>("Tolerance");
// Has a drop tolerance been chosen and is it a double-precision number?
bool dtol_double = Teuchos::isParameterType<double>(Prec_List,

"Drop Tolerance");

10.6. Teuchos::ParameterList 87

The last two methods for checking the parameter type are equivalent. There is some question
as to whether the syntax of the first type-checking method (isType) is acceptable to older
compilers. Thus, the second type-checking method (isParameterType) is offered as a portable
alternative.

Parameters can be retrieved from the parameter list in quite a few ways:

// Get method that creates and sets the parameter if it doesn’t exist.
int its = My_List.get("Max Iters", 1200);
// Get method that retrieves a parameter of a particular type.
float tol = My_List.template get<float>("Tolerance");

In the above example, the first “get” method is a safe way of obtaining a parameter when
its existence is indefinite but required. The second “get” method should be used when the
existense of the parameter is definite. This method will throw an exception if the parameter
doesn’t exist. The safest way to use the second “get” method is in a try/catch block:

try {
tol = My_List.template get<float>("Tolerance");
}
catch (exception& e) {
tol = 1e-6;
}

The second “get” method uses a syntax that may not be acceptable to older compilers.
Optionally, there is another portable templated “get” function that can be used in the place
of the second “get” method:

try {
tol = Teuchos::getParameter<float>(My_List, "Tolerance");
}
catch (exception& e) {
tol = 1e-6;
}

A parameter list can be sent to the output stream:

cout<< My_List << endl;

For this parameter list, the output would look like:

Max Iters = 1550
Preconditioner ->
Drop Tolerance = 0.001 [unused]
Type = ILU [unused]

Solver = GMRES [unused]
Tolerance = 1e-10

It is important to note that misspelled parameters (with additional space characters, capital-
izations, etc.) may be ignored. Therefore, it is important to be aware that a given parameter
has not been used. Unused parameters can be printed with method:

My_List.unused(cout);

This section presents examples of all the methods in the Teuchos::ParameterList class
and can be found in didasko/examples/teuchos/ex4.cpp.

88 Chapter 10. The Teuchos Utility Classes

10.7 Teuchos::RCP

The Teuchos::RCP class is a templated class for implementing automatic garbage collection in
C++ using smart, reference-counted pointers. Using this class allows one client to dynamically
create an object and pass the object around to other clients without fear of memory leaks.
No client is required to explicitly call delete because object will be deleted when all the clients
remove their references to it. The type of garbage collection performed by Teuchos::RCP is
similar to those found in Perl and Java.

To use the Teuchos::RCP class, include the header:

#include "Teuchos_RCP.hpp"

The data type used with Teuchos::RCP should not be a built-in data type (like int or
double), this creates unnecessary overhead. Instead, it should be used to manage dynamic
objects and data members that need to be shared with many clients. This means that the
data type will most likely be a C++ class. Consider the class hierarchy:

class A {
public:
A() {}
virtual ~A(){}
virtual void f(){}

};
class B1 : virtual public A {};
class B2 : virtual public A {};
class C : public B1, public B2 {};

Creating a reference-counted pointer to a dynamically allocated object (of type A) can be
done several ways:

// Create a reference-counted NULL pointer of type A.
RCP<A> a_null_ptr;
// Create a reference-counted pointer of non-const type A.
RCP<A> a_ptr = rcp(new A);
// Create a reference-counted pointer of const type A.
RCP<const A> ca_ptr = rcp(new A);
// Create a const reference-counted pointer of non-const type A.
const RCP<A> a_cptr = rcp(new A);
// Create a const reference-counted pointer of const type A.
const RCP<const A> ca_cptr = rcp(new A);

The Teuchos::RCP class can also perform implicit conversions between a derived class
(B1) and its base class (A):

RCP<B1> b1_ptr = rcp(new B1);
RCP<A> a_ptr1 = b1_ptr;

Other non-implicit type conversions like static, dynamic, or const casts can be taken care of
by non-member template functions:

RCP<const C> c_ptr = rcp(new C);
// Implicit cast from C to B2.
RCP<const B2> b2_ptr = c_ptr;

10.8. Teuchos::TimeMonitor 89

// Safe cast, type-checked, from C to A.
RCP<const A> ca_ptr1 = rcp_dynamic_cast<const A>(c_ptr);
// Unsafe cast, non-type-checked, from C to A.
RCP<const A> ca_ptr2 = rcp_static_cast<const A>(c_ptr);
// Cast away const from B2.
RCP<B2> nc_b2_ptr = rcp_const_cast<B2>(b2_ptr);

Using a reference-counted pointer is very similar to using a raw C++ pointer. Some of
the operations that are common to both are:

RCP<A>
a_ptr2 = rcp(new A), // Initialize reference-counted pointers.
a_ptr3 = rcp(new A); // ""

A *ra_ptr2 = new A, // Initialize non-reference counted pointers.
*ra_ptr3 = new A; // ""

a_ptr2 = rcp(ra_ptr3); // Assign from a raw pointer (only do this once!)
a_ptr3 = a_ptr2; // Assign one smart pointer to another.
a_ptr2 = rcp(ra_ptr2); // Assign from a raw pointer (only do this once!)
a_ptr2->f(); // Access a member of A using ->
ra_ptr2->f(); // ""
*a_ptr2 = *a_ptr3; // Dereference the objects and assign.
*ra_ptr2 = *ra_ptr3; // ""

However, a reference-counted pointer cannot be used everywhere a raw C++ pointer can. For
instance, these statements will not compile:

// Pointer arithmetic ++, --, +, - etc. not defined!
a_ptr1++; // error
// Comparison operators ==, !=, <=, >= etc. not defined!
a_ptr1 == ra_ptr1; // error

Because the two are not equivalent, the Teuchos::RCP class provides a way of getting the
raw C++ pointer held by any RCP<A> object:

A* true_ptr = a_ptr1.get();

These are just some of the basic features found in the Teuchos::RCP class. A more
extensive tutorial of this powerful tool is “in the works” and will be made available to Teuchos
users as soon as it is finished. The examples presented in this section can be found in
didasko/examples/teuchos/ex5.cpp.

10.8 Teuchos::TimeMonitor

The Teuchos::TimeMonitor class is a container that manages a group of timers. In this way,
it can be used to keep track of timings for various phases of the code. Internally, this class
holds an array of Teuchos::Time objects. The Teuchos::Time class defines a basic wall-clock
timer that can start(), stop(), and return the totalElapsedTime().

To use the Teuchos::TimeMonitor class, include the header:

#include "Teuchos_TimeMonitor.hpp"

To create a timer for the TimeMonitor to manage, call:

RCP<Time> FactTime = TimeMonitor::getNewTimer("Factorial Time");

90 Chapter 10. The Teuchos Utility Classes

The getNewTimer method creates a new reference-counted Teuchos::Time object and adds
it to the internal array. To avoid passing this timer into each method that needs timing,
consider putting it in the global scope (declare it outside of main(argc, argv[])). Now,
when we want to time a part of the code, the appropriate timer should be used to construct
a local TimeMonitor:

Teuchos::TimeMonitor LocalTimer(*FactTime);

This timer will be started during the construction of LocalTimer and stopped when the
destructor is called on LocalTimer.

To obtain a summary from all the timers in the global TimeMonitor, use:

TimeMonitor::summarize();

Information from each timer can also be obtained using the methods from Teuchos::Time.
This section presents examples of all the methods in the Teuchos::TimeMonitor class and
can be found in didasko/examples/teuchos/ex6.cpp.

10.9 Teuchos::CommandLineProcessor

Teuchos::CommandLineProcessor is a class that helps to parse command line input argu-
ments and set runtime options. Additionally, a CommandLineProcessor object can provide
the user with a list of acceptable command line arguments, and their default values.

To use the Teuchos::CommandLineProcessor class, include the header:

#include "Teuchos_CommandLineProcessor.hpp"

Creating an empty command line processor looks like:

Teuchos::CommandLineProcessor My_CLP;

To set and option, it must be given a name and default value. Additionally, each option can
be given a help string. Although it is not necessary, a help string aids a users comprehension
of the acceptable command line arguments. Some examples of setting command line options
are:

// Set an integer command line option.
int NumIters = 1550;
My_CLP.setOption("iterations", &NumIters, "Number of iterations");
// Set a double-precision command line option.
double Tolerance = 1e-10;
My_CLP.setOption("tolerance", &Tolerance, "Tolerance");
// Set a string command line option.
string Solver = "GMRES";
My_CLP.setOption("solver", &Solver, "Linear solver");
// Set a boolean command line option.
bool Precondition;
My_CLP.setOption("precondition","no-precondition",

&Precondition,"Preconditioning flag");

There are also two methods that control the strictness of the command line processor.
For a command line processor to be sensitive to any bad command line option that it does
not recognize, use:

My_CLP.recogniseAllOptions(false);

10.9. Teuchos::CommandLineProcessor 91

Then, if the parser finds a command line option it doesn’t recognize, it will throw an excep-
tion. To prevent a command line processor from throwing an exception when it encounters a
unrecognized option or when the help string is printed, use:

My_CLP.throwExceptions(false);

Finally, to parse the command line, argc and argv are passed to the parse method:

My_CLP.parse(argc, argv);

The --help output for this command line processor is:

Usage: ./ex7.exe [options]
options:
--help Prints this help message
--pause-for-debugging Pauses for user input to allow

attaching a debugger
--iterations int Number of iterations

(default: --iterations=1550)
--tolerance double Tolerance

(default: --tolerance=1e-10)
--solver string Linear solver

(default: --solver="GMRES")
--precondition bool Preconditioning flag
--no-precondition (default: --precondition)

This section presents examples of all the methods in the Teuchos::CommandLineProcessor
class and can be found in didasko/examples/teuchos/ex7.cpp.

92 Chapter 10. The Teuchos Utility Classes

11
Multilevel Preconditioners with ML
Marzio Sala, Michael Heroux, David Day

The ML package defines a class of preconditioners based on multilevel methods [BHM00,
TT00]. While theoretically ML preconditioners apply to any linear system, the range
of applicability of the methods is limited at this time, primarily to certain linear elliptic
partial differential equations descretized with linear shape functions. The ML package
provides multilevel solvers and preconditioners based on geometric and algebraic coars-
ening schemes. Please contact the developers for information on the status of special
purpose methods, such as those for the incompressible Navier-Stokes equations and
Maxwell’s equations.
This Chapter will present:

• A multilevel preconditioning framework (in Section 11.1);

• How to use ml objects as AztecOO preconditioners (in Section 11.2);

• The ML Epetra::MultiLevelOperator class (in Section 11.3);

• How to define black-box preconditioners using the
ML Epetra::MultiLevelPreconditioner Class (in Section 11.4);

• How to implement two level domain decomposition methods with aggregation
based coarse matrix (in Section 11.5).

11.1 A Multilevel Preconditioning Framework

For certain combinations of iterative methods and linear systems, the error at each iteration
projected onto the eigenfunctions has components that decay at a rate proportional to the
corresponding eigenvalue (or frequency). Multilevel methods exploit this property [BHM00]
by projecting the linear system onto a hierarchy of increasingly coarsened “meshes” so that
each error component rapidly decays on at least one coarse “mesh.” The linear system on
the coarsest “mesh”, called the coarse grid problem, is solved exactly. The iterative method
is called the smoother, as a reflection of its diminished role as a way to damp out the high
frequency error. The grid transfer (or interpolation) operators are called restriction (R) and
prolongation (P) operators.

Multilevel methods are characterized by the sequence of coarse spaces, the definition of
the operator each coarse space, the specification of the smoother, and the restriction and

93

94 Chapter 11. Multilevel Preconditioners with ML

prolongation operators. Geometric multigrid (GMG) methods are multilevel methods that
require the user to specify the underlying grid, and in most cases a hierarchy of (not necessarily
nested) coarsens grids. Both the automatic generation of a grid-hierarchy for GMG and the
specification of the ML, designed for unstructured problems, are beyond the scope of the
tutorial.

Algebraic multigrid (AMG) (see [BHM00, Section 8]) method development has been mo-
tivated by the demand for multilevel methods that are easier to use. In AMG, both the
matrix hierarchy and the prolongation operators are constructed just from the stiffness ma-
trix. Recall that to use Aztec00 or IFPACK, a user must supply a linear system, and select
a preconditioning strategy. In AMG, the only additional information required from the user
is to specify a coarsening strategy.

Readers that are unfamiliar with multigrid methods are strongly advised to review [BHM00]
before using ML.

A multilevel method for (7.1) depends on the number of coarsen grid levels, and operators
for each level. Levels are numbered from the coarsest level, 0, to the finest. The pre- and
post- smoothers are denoted S(1)

k and S(2)
k respectively. Rk−1,k is the restriction operator

from level k to k− 1, and Pk,k−1 is a prolongator from k− 1 to k. In AMG, the operators on
the coarse meshes Ak are defined by

Ak−1 = Rk−1,kAkPk,k−1.

The AMG coarse grid operators may be less sparse than the corresponding GMG coarse
grid operators, defined by assembling the coefficient matrix on the coarse grid. These pieces
combine into a multigrid solver.

Recursive Definition of the V-cycle Scheme MGM(x, b, Number of Levels)

if k > 0
x = S(1)

k (x, b)
d = Rk−1,k(b−Akx)
v = 0
MGM(v, d, k − 1)
x = x + Pk,k−1v

x = S(2)
k (x, b)

else
x = A−1

k b

Remark 19. The tutorial only discussed AMG methods. The interested reader is referred to
[TH04] for information on GMG methods in ML.

11.2 ML Objects as AztecOO Preconditioners

ML may be used as a “black-box” multilevel preconditioner, using aggregation procedures to
define the multilevel hierarchy. In order to use ML as a preconditioner, we need to define an
AztecOO Solver, as outlined in Section 7. ML requires the user to define a structure that
stores internal data. The convention in ML is to call the structure ml_handle. Next define

11.2. ML Objects as AztecOO Preconditioners 95

the maximum number of levels, the amount of diagnostic information written to the screen,
which varies from none (0) to extremely verbose (10), and creaste the ML handle structure:

ML *ml_handle;
int N_levels = 10;
ML_Set_PrintLevel(3);
ML_Create(&ml_handle,N_levels);

Next construct an ML preconditioner for an Epetra matrix. Additionally, ML requires a
structure that stores information about the aggregates at each level called ML Aggregate:

EpetraMatrix2MLMatrix(ml_handle, 0, &A);
ML_Aggregate *agg_object;
ML_Aggregate_Create(&agg_object);

The multilevel hierarchy is constructed with the instruction

N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_handle,
0,
ML_INCREASING,
agg_object);

Here, 0 is the index of the finest level, and the index of coarser levels will be obtained by
incrementing this value. Please see [SHT04] for more information on the input parameters.

Next define the smoother, such as symmetric Gauss-Seidel, and initialize the solver:

ML_Gen_Smoother_SymGaussSeidel(ml_handle, ML_ALL_LEVELS,
ML_BOTH, 1, ML_DEFAULT);

ML_Gen_Solver (ml_handle, ML_MGV, 0, N_levels-1);

Finally, use this ML hierarchy to create an Epetra Operator, set the preconditioning
operator of our AztecOO solver, and then call Iterate() as usual:

ML_Epetra::MultiLevelOperator MLop(ml_handle,comm,map,map);
solver.SetPrecOperator(&MLop);
solver.Iterate(Niters, 1e-12);

The entire code is reported in
didasko/examples/ml/ex1.cpp. The output is reported below.

[msala:ml]> mpirun -np 2 ./ex1.exe
**
* ML Aggregation information *
==
ML_Aggregate : ordering = natural.
ML_Aggregate : min nodes/aggr = 2
ML_Aggregate : max neigh selected = 0
ML_Aggregate : attach scheme = MAXLINK
ML_Aggregate : coarsen scheme = UNCOUPLED
ML_Aggregate : strong threshold = 0.000000e+00
ML_Aggregate : P damping factor = 1.333333e+00

96 Chapter 11. Multilevel Preconditioners with ML

ML_Aggregate : number of PDEs = 1
ML_Aggregate : number of null vec = 1
ML_Aggregate : smoother drop tol = 0.000000e+00
ML_Aggregate : max coarse size = 1
ML_Aggregate : max no. of levels = 10
**
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
ML_Aggregate_CoarsenUncoupled : current level = 0
ML_Aggregate_CoarsenUncoupled : current eps = 0.000000e+00
Aggregation(UVB) : Total nonzeros = 128 (Nrows=30)
Aggregation(UC) : Phase 0 - no. of bdry pts = 0
Aggregation(UC) : Phase 1 - nodes aggregated = 28 (30)
Aggregation(UC) : Phase 1 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 1 - nodes aggregated = 28
Aggregation(UC_Phase2_3) : Phase 1 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 2a- additional aggregates = 0
Aggregation(UC_Phase2_3) : Phase 2 - total aggregates = 8
Aggregation(UC_Phase2_3) : Phase 2 - boundary nodes = 0
Aggregation(UC_Phase2_3) : Phase 3 - leftovers = 0 and singletons = 0
Aggregation time = 1.854551e-03
Gen_Prolongator : max eigen = 1.883496e+00
ML_Gen_MGHierarchy : applying coarsening
ML_Gen_MGHierarchy : Gen_RAP
RAP time for level 0 = 5.319577e-04
ML_Gen_MGHierarchy : Gen_RAP done
ML_Gen_MGHierarchy : applying coarsening
ML_Aggregate_Coarsen begins
ML_Aggregate_CoarsenUncoupled : current level = 1
ML_Aggregate_CoarsenUncoupled : current eps = 0.000000e+00
Aggregation(UVB) : Total nonzeros = 46 (Nrows=8)
Aggregation(UC) : Phase 0 - no. of bdry pts = 0
Aggregation(UC) : Phase 1 - nodes aggregated = 6 (8)
Aggregation(UC) : Phase 1 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 1 - nodes aggregated = 6
Aggregation(UC_Phase2_3) : Phase 1 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 2a- additional aggregates = 0
Aggregation(UC_Phase2_3) : Phase 2 - total aggregates = 2
Aggregation(UC_Phase2_3) : Phase 2 - boundary nodes = 0
Aggregation(UC_Phase2_3) : Phase 3 - leftovers = 0 and singletons = 0
Aggregation time = 1.679042e-03
Gen_Prolongator : max eigen = 1.246751e+00
ML_Gen_MGHierarchy : applying coarsening
ML_Gen_MGHierarchy : Gen_RAP
RAP time for level 1 = 4.489557e-04
ML_Gen_MGHierarchy : Gen_RAP done
ML_Gen_MGHierarchy : applying coarsening

11.3. The ML Epetra::MultiLevelOperator Class 97

ML_Aggregate_Coarsen begins
Aggregation total setup time = 8.903003e-02 seconds
Smoothed Aggregation : operator complexity = 1.390625e+00.

***** Preconditioned CG solution
***** Epetra ML_Operator
***** No scaling

iter: 0 residual = 1.000000e+00
iter: 1 residual = 1.289136e-01
iter: 2 residual = 4.710371e-03
iter: 3 residual = 7.119470e-05
iter: 4 residual = 1.386302e-06
iter: 5 residual = 2.477133e-08
iter: 6 residual = 6.141025e-10
iter: 7 residual = 6.222216e-12
iter: 8 residual = 1.277534e-13

Solution time: 0.005845 (sec.)
total iterations: 8

Residual = 6.99704e-13

11.3 The ML Epetra::MultiLevelOperator Class

As with other Trilinos packages, ML can be compiled and run independently from Epetra.
It accepts input matrix in formats different from the Epetra RowMatrix or Epetra Operator.
However, as part of the Trilinos project, ML can be used to define a preconditioner operator for
Epetra_LinearProblem objects (see for instance [Her02]). This means that, in a C++ frame-
work, ML can be defined as an Epetra_Operator object, applied to an Epetra_MultiVector
object, and used as a preconditioner for AztecOO. This can be done in two ways:

• By defining an ML_Epetra::MultiLevelOperator object, derived from the Epetra -
Operator class. The constructor of this object requires already filled ML Struct and
ML Aggregate structures. ML must have been configure with the option
--enable-epetra.

• By defining an ML_Epetra::MultiLevelPreconditioner object, derived from the Epe-
tra RowMatrix class. Basically, the constructor of this object demands for an Epe-
tra RowMatrix pointer and a Teuchos parameter list, that contains all the user’s defined
parameters. ML must have been configure with options
--enable-epetra --enable-teuchos.

The first approach, described in Section 11.3, is more general, and can be applied to
geometric and algebraic multilevel preconditioner, but it requires a deeper knowledge of the
ML package. This is because the user has to explicitly construct the ML hierarchy, define

98 Chapter 11. Multilevel Preconditioners with ML

the aggregation strategies, the smoothers, and the coarse grid solver. The second approach,
presented in Section 11.4, instead, although limited to algebraic multilevel preconditioners,
allows the use of ML as a black-box preconditioner. This class automatically constructs all the
components of the preconditioner, following the parameters specified in a Teuchos parameters’
list.

Next we walk through how to write some code to construct an ML preconditioner for
an Epetra_RowMatrix A. The ML_Epetra::MultiLevelOperator class is defined in the
header file ml_MultiLevelOperator.h. Users must include it, and along with some sub-
set of ml_config.h, AztecOO.h, Epetra_Operator.h, Epetra_MultiVector.h and Epetra_-
LinearProblem.h. Check the Epetra and AztecOO documentation for more information on
this topic.

The next steps proceed exactly as in § 11.2:

ML *ml_handle;
int N_levels = 10;
ML_Set_PrintLevel(3);
ML_Create(&ml_handle,N_levels);
EpetraMatrix2MLMatrix(ml_handle, 0, &A);
ML_Aggregate *agg_object;
ML_Aggregate_Create(&agg_object);
N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_handle,

0,
ML_INCREASING,
agg_object);

ML_Gen_Smoother_SymGaussSeidel(ml_handle, ML_ALL_LEVELS,
ML_BOTH, 1, ML_DEFAULT);

ML_Gen_Solver (ml_handle, ML_MGV, 0, N_levels-1);
ML_Epetra::MultiLevelOperator MLop(ml_handle,comm,map,map);

At this point, our example diverges from § 11.2. Instead of using ML to solve the lin-
ear system Ax = b, where x and b are Epetra_MultiVector, use the ML operator as the
precondition for an Aztec00 linear system, and solve it:

Epetra_LinearProblem Problem(A,&x,&b);
AztecOO Solver(Problem);
Solver.SetPrecOperator(&MLop);
Solver.SetAztecOption(AZ_solver, AZ_gmres);
Solver.Iterate(Niters, 1e-12);

11.4 The ML Epetra::MultiLevelPreconditioner Class

An alternative to the ML Epetra::MultiLevelOperator (that is also in the namespace ML Epetra)
is the MultiLevelPreconditioner class. Replace the header file
ml_MultiLevelOperator.h discussed in section 11.3 by ml_MultiLevelPreconditioner.h.

Table 11.1 reports the aggregation schemes currently available in ML.
A very simple fragment of code using this class is reported below. The reader may refer to

file $ML_HOME/examples/ml_example_MultiLevelPreconditioner.cpp for a more complex
example. To run example, first configure ML --enable-triutils.

11.4. The ML Epetra::MultiLevelPreconditioner Class 99

Uncoupled For a 1,2,or 3 dimensional structured Cartesian grid with a
3, 9 or 27 point stencil respectively, construct aggregates of
optimal size such that each aggregate resides on one proces-
sor.

MIS Maximal independent set based coarsening with aggregates
allowed to reside on multiple processes. The scheme mini-
mizes the number of iterations, but the cost per iteration is
high.

METIS Use a serial graph partitioner to create aggregates resid-
ing on one processor. The number of nodes in each aggre-
gate is specified with the option aggregation: nodes per
aggregate. ML must be configured with --with-ml metis.

ParMETIS Use a parallel graph partitioner to create aggregates that
may reside on multiple processors. ML must be configured
with --with-ml parmetis3x. The number of aggregates is
specified by option aggregation: global number.

Table 11.1: ML Epetra::MultiLevelPreconditioner Coarsening Schemes

Jacobi Point-Jacobi. Damping factor is specified using smoother:
damping factor, and the number of sweeps with smoother:
sweeps

Gauss-Seidel Point Gauss-Seidel.
Aztec Use AztecOO’s built-in preconditioning functions as

smoothers. Or, use approximate solutions with AztecOO as
smoothers. The AztecOO vectors options and params can
be set using smoother: Aztec options and smoother:
Aztec params.

Table 11.2: ML Epetra::MultiLevelPreconditioner Smoothers

Jacobi Use Jacobi as a solver.
Gauss-Seidel Use Gauss-Seidel as a solver.
Amesos_KLU Use Amesos’s KLU sequential solver.
Amesos_UMFPACK Use UMFPACK.
Amesos_Superludist Use SuperLU DIST.
Amesos_MUMPS Use MUMPS.

Table 11.3: ML Epetra::MultiLevelPreconditioner Coarsest Grid Exact Solvers To use Ame-
sos, ML must be configured with --enable-amesos and Amesos also be configured as needed.

100 Chapter 11. Multilevel Preconditioners with ML

#include "ml_include.h"
#include "ml_MultiLevelPreconditioner.h"
#include "Teuchos_ParameterList.hpp"

...

// A is an Epetra_RowMatrix derived class object
// solver is an AztecOO object

Teuchos::ParameterList MList;

// default values for smoothed aggregation
ML_Epetra::SetDefaults("SA",MLList);
MLList.set("max levels",6);
MLList.set("increasing or decreasing","decreasing");
MLList.set("aggregation: type", "MIS");
MLList.set("coarse: type","Amesos_KLU");

ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

solver.SetPrecOperator(MLPrec);
solver.SetAztecOption(AZ_solver, AZ_gmres);
solver.Iterate(Niters, 1e-12);

...

delete MLPrec;

The general procedure is as follows. First, the user defines a Teuchos parameters’ list.
Second input parameters are set via method set(ParameterName,ParameterValue), where
ParameterName is a string defining the parameter, and ParameterValue is the specified pa-
rameter, that can be any C++ object or pointer. This list is passed to the constructor,
together with a pointer to the matrix, and a boolean flag. If this flag is set to false, the
constructor will not compute the multilevel hierarchy until when MLPrec->ComputePrecon-
ditioner() is called. The hierarchy can be destroyed using MLPrec->Destroy(). For in-
stance, the user may define a code like:

// A is still not filled with numerical values
ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(A, MLList, false);

// compute the elements of A
...
// now compute the preconditioner
MLPrec->ComputePreconditioner();

// solve the linear system, and refill A

11.5. Two-Level Domain Decomposition Preconditioners with ML 101

...
MLPrec->Destroy(); // destroy previous preconditioner,
MLPrec->ComputePreconditioner(); // and build a new one

In this fragment of code, the user defines the ML preconditioner, but does not create the
preconditioner in the construction phase. This is of particular interest, for example, when
ML is used in conjunction with nonlinear solvers (like NOX [KP04]).

We point out that the input parameter list is copied in the construction phase, hence later
changes to MLList will not affect the preconditioner. Should one need to modify parameters
in the MLPrec’s internally stored parameter list, proceed as follows:

ParameterList & List = MLPrec->GetList();

and then directly modify List.

All ML options can have a common prefix, specified by the user in the construction phase.
For example, suppose that we require ML: to be the prefix. The constructor will be

MLLIst.set("ML: aggregation: type", "METIS");
ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(*A,

MLList,
true,
Prefix);

where Prefix is a char array containing ML: .
Note that spaces are important: Do not include leading or trailing spaces, and separate

words by just one space! Misspelled parameters will not be used, and can be detected calling
method PrintUnused() after the construction of the multilevel hierarchy.

For a detailed list of all the parameters, we refer to the ML user’s guide. Here, we report
the most used parameters in Tables 11.1, 11.2 and 11.3.

11.5 Two-Level Domain Decomposition Preconditioners with ML

The idea of two level domain decomposition based on aggregation is to use a graph partitioner
to partition the local or global graph into subgraphs, and then treat each subgraph as a large
aggregate.

The example contained herein uses the graph decomposition library METIS to create the
coarse-level matrix. If you don’t have METIS, or just do not want to re-configure ML, you may
run the example you will be limited to use only one aggregate per process. There are three
changes to the Trilinos configuration. One flag tells the package (ML) to look for an external
library, and the other two flag tells the compiler where to find the include directories and
external library. Configure ML with the flags --with-ml_metis, and with --with-incdirs
and --with-ldflags set to the locations of the METIS include files and library. Please type
configure --help in the ML subdirectory for more information.

Two-level domain decomposition methods are effective for the iterative solution of many
different kinds of linear systems. For some classes of problems, a very convenient way to
define the coarse grid operator is to use an aggregation procedure. This is very close to what
presented in Section 11.2. The main difference is that only two level methods are considered,

102 Chapter 11. Multilevel Preconditioners with ML

and that the coarse grid remains of (relatively) small size. The idea is to define a small number
of aggregates on each process, using a graph decomposition algorithm (as implemented in the
library METIS, for instance)1. This can be done as follows.

The linear system matrix A, here coded as an Epetra CrsMatrix2, corresponds to the
descretization of a 2D Laplacian on a Cartesian grid. x and b are the solution vector and the
right-hand side, respectively.

The AztecOO linear problem is defined as

Epetra_LinearProblem problem(&A, &x, &b);
AztecOO solver(problem);

At this point, we can create the Teuchos parameters’ list, with the following parameters:

ParameterList MLList;

ML_Epetra::SetDefaults("DD",MLList);

MLList.set("max levels",2);
MLList.set("increasing or decreasing","increasing");

MLList.set("aggregation: type", "METIS");
MLList.set("aggregation: nodes per aggregate", 16);
MLList.set("smoother: pre or post", "both");
MLList.set("coarse: type","Amesos_KLU");
MLList.set("smoother: type", "Aztec");

The last option tells ML to use the Aztec preconditioning function as a smoother. Aztec
requires an integer vector options and a double vector params. Those can be defined as
follows:

Teuchos::RCP<vector<int>> options = rcp(new vector<int>(AZ_OPTIONS_SIZE));
Teuchos::RCP<vector<double>> params = rcp(new vector<double>(AZ_PARAMS_SIZE));
AZ_defaults(options,params);
AZ_defaults(&(*options)[0],&(*params)[0]);
(*options)[AZ_precond] = AZ_dom_decomp;
(*options)[AZ_subdomain_solve] = AZ_icc;

MLList.set("smoother: Aztec options", options);
MLList.set("smoother: Aztec params", params);

The last two commands set the Teuchos reference-counted pointers, options and params, in
the parameter list. Note that all Aztec preconditioners can be used as smoothers for ML. At
this point we can create the ML preconditioner as

ML_Epetra::MultiLevelPreconditioner * MLPrec =
new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

1Aggregation schemes based on ParMETIS are also available. Please refer to the help of the ML configure

for more details.
2Epetra VbrMatrix and Epetra RowMatrix can be used as well.

11.5. Two-Level Domain Decomposition Preconditioners with ML 103

and check that no options have been misspelled, using

MLPrec->PrintUnused();

AztecOO solver is called using

solver.SetPrecOperator(MLPrec);

solver.SetAztecOption(AZ_solver, AZ_cg_condnum);

int Niters = 500;
solver.SetAztecOption(AZ_kspace, 160);

solver.Iterate(Niters, 1e-12);

Finally, some (limited) information about the preconditioning phase are obtained using

cout << MLPrec->GetOutputList();

The entire code is reported in
didasko/examples/ml/ex2.cpp.

104 Chapter 11. Multilevel Preconditioners with ML

12
Interfacing Direct Solvers with Amesos

Marzio Sala

The Amesos package provides an object-oriented interface to several direct sparse solvers.
Amesos will solve (using a direct factorization method) the linear systems of equa-
tions (7.1) where A is stored as an Epetra RowMatrix object, and X and B are Epe-
tra MultiVector objects.
The Amesos package has been designed to face some of the challenges of direct solution
of linear systems. In fact, many solvers have been proposed in the last years, and often
each of them requires different input formats for the linear system matrix. Moreover, it
is not uncommon that the interface changes between revisions. Amesos aims to solve
those problems, furnishing a clean, consistent interface to many direct solvers.

12.1 Introduction to the Amesos Design

Using Amesos, users can interface their codes with a (large) variety of direct linear solvers,
sequential or parallel, simply by a code instruction of type

AmesosProblem.Solver();

Amesos will take care of redistributing data among the processors, if necessary.
All the Amesos classes are derived from a base class mode, Amesos_BaseSolver. This

abstract interface provides the basic functionalities for all Amesos solvers, and allows users
to choose different direct solvers very easily – by changing an input scalar parameter. See
Section 12.2 for more details.

In this Chapter, we will suppose that matrix A in equation (7.1) is defined as an Epe-
tra RowMatrix, in principle with nonzero entries on all the processes defined in the Epe-
tra Comm communicator in use. X and B, instead, are Epetra MultiVector, defined on the
same communicator.

Amesos contains several classes:

• Amesos_Lapack: Interface to serial dense solver LAPACK.

• Amesos_KLU: Interface to Amesos’s internal solver KLU. KLU is a serial, unblocked code
ideal for getting started, and for very sparse matrices, such as circuit matrices.

• Amesos_Umfpack: Interface to Tim Davis’s UMFPACK [Dav03]. UMFPACK is a serial
solver.

105

106 Chapter 12. Interfacing Direct Solvers with Amesos

• Amesos_Superludist: Interface to Xiaoye S. Li’s SuperLU solver suite, including Su-
perLU, SuperLU DIST 1.0 and SuperLU DIST 2.0 [LD03]. SuperLU is a serial solvers,
while SuperLU DIST is a parallel solver.

• Amesos_Mumps: Interface to MUMPS 4.3.1 [ADLK03]1. MUMPS is a parallel direct
solver;

• Amesos_Scalapack: Interface to ScaLAPACK [BCC+97], the parallel version of LA-
PACK2.

If the supported packages is serial, and one is solving with more than one process, matrix
and right-hand side are shipped to process 0, solved, then the solution is broadcasted to the
distributed solution vector X. For parallel solvers, instead, various options are supported,
depending on the package at hand:

• The Amesos Superludist interface can be used over all the processes, as well as on a
subset of them. The matrix is kept in distributed form over the processes of interest;

• Amesos Mumps can keep the matrix in a distributed form over all the processes, or
the matrix can be shipped to processor 0. In both cases, all the processes in the MPI
communicator will be used.

This Chapter, we will cover:

• The Amesos BaseSolver interface to various direct solvers, presented (in Section 12.2).

12.2 Amesos BaseSolver: A Generic Interface to Direct Solvers

All Amesos objects are constructed from the function class Amesos. Amesos allows a code
to delay the decision about which concrete class to use to implement the Amesos BaseSolver
interface. The main goal of this class is to allow the user to select any supported (and enabled
at configuration time) direct solver, simply changing an input parameter. Another remarkable
advantage of Amesos BaseSolver is that, using this class, users does not have to include the
header files of the 3-part libraries in their code3.

An example of use of this class is as follows. First, the following header files must be
included:

#include "Amesos.h"
#include "AmesosClassType.h"

Then, let A be an Epetra RowMatrix object (for instance, and Epetra CrsMatrix). We need
to define a linear problem,

Epetra_LinearProblem * Amesos_LinearProblem =
new Epetra_LinearProblem;

Amesos_LinearProblem->SetOperator(A) ;

1At present, MUMPS is the only Amesos class that can take advantage of the symmetry of the linear system
matrix.

2Note that Amesos does not contain interfaces to LAPACK routines. Other Trilinos packages already offer
those routines (Epetra and Teuchos).

3Using Amesos BaseSolver, 3-part libraries header files are required in the compilation of Amesos only.

12.2. Amesos BaseSolver: A Generic Interface to Direct Solvers 107

and to create an Amesos parameter list (which can be empty):

Teuchos::ParameterList ParamList ;

Now, let Choice be an string, with one of the following values:

• AMesos Klu;

• Amesos Umfpack;

• Amesos Mumps;

• Amesos Superludist;

• Amesos Scalapack.

We can construct an Amesos_BaseSolver object as follows:

Amesos_BaseSolver * A_Base;
Amesos A_Factory;

A_Base = A_Factory.Create(Choice, *Amesos_LinearProblem,
ParamList);

assert(A_Base!=0);

Symbolic and numeric factorizations are computed using methods

A_Base->SymbolicFactorization();
A_Base->NumericFactorization();

The numeric factorization phase will check whether a symbolic factorization exists or not. If
not, method SymbolicFactorization() is invoked. Solution is computed (after setting of
LHS and RHS in the linear problem), using

A_Base->Solve();

The solution phase will check whether a numeric factorization exists or not. If not, method
SymbolicFactorization() is called.

Users must provide the nonzero structure of the matrix for the symbolic phase, and the
actual nonzero values for the numeric factorization. Right-hand side and solution vectors
must be set before the solution phase, for instance using

Amesos_LinearProblem->SetLHS(x);
Amesos_LinearProblem->SetRHS(b);

A common ingredient to all the Amesos classes is the Teuchos parameters’ list. This object,
whose definition requires the input file Teuchos_ParameterList.hpp, is used to specify the
parameters that affect the 3-part libraries. Here, we simply recall that the parameters’ list
can be created as

Teuchos::ParameterList AmesosList;

and parameters can be set as

AmesosList.set(ParameterName,ParameterValue);

Here, ParameterName is a string containing the parameter name, and ParameterValue is any
valid C++ object that specifies the parameter value (for instance, an integer, a pointer to an
array or to an object).

For a detailed list of parameters we refer to [SS04].

108 Chapter 12. Interfacing Direct Solvers with Amesos

13
Eigenvalue and Eigenvector
Computations with Anasazi

Christopher Baker, Heidi Thornquist

Two goals motivated the development of the Anasazi eigensolver package: interoper-
ability and extensibility. The intention of interoperability is to ease the use of Anasazi in
a wide range of application environments. To this end, the algorithms written in Anasazi
utilize an abstract interface for operators and vectors, allowing the user to leverage exist-
ing linear algebra libraries. The concept of extensibility drives development of Anasazi
to allow users to make efficient use of Anasazi codes while simultaneously enabling
them to easily develop their own code in the Anasazi framework. This is encouraged by
promoting code modularization and multiple levels of access to solvers and their data.
In this Chapter, we outline the Anasazi eigensolver framework and motivate the design.
In particular, we present

• the Anasazi operator/vector interface (Section 13.1);

• the Anasazi eigensolver framework (Section 13.2);

• a description of Anasazi classes (Section 13.3);

• the interface to the Epetra linear algebra package (Section 13.4);

• an example using Anasazi for the solution of an eigenvalue problem (Section 13.5).

13.1 The Anasazi Operator/Vector Interface

The Anasazi eigensolver package utilizes abstract interfaces for operators and multivectors.
The goals of this are to leverage existing linear algebra libraries and to protect previous soft-
ware investment. Algorithms in Anasazi are developed at a high-level, where the underlying
linear algebra objects are opaque. The choice in linear algebra is made through templating,
and access to the functionality of the underlying objects is provided via the traits classes
Anasazi::MultiVecTraits and Anasazi::OperatorTraits.

These classes define opaque interfaces, specifying the operations that multivector and
operator classes must support in order to be used in Anasazi without exposing low-level
details of the underlying data structures.

109

110 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

Method name Description
Clone Creates a new empty multivector containing a

specified number of columns.
CloneCopy Creates a new multivector with a copy of the

contents of an existing multivector (deep copy).
CloneView Creates a new multivector that shares the se-

lected contents of an existing multivector (shal-
low copy).

GetVecLength Returns the vector length of a multivector.
GetNumberVecs Returns the number of vectors in a multivector.
MvTimesMatAddMv Apply a SerialDenseMatrix M to another mul-

tivector A, B ← αAM + βB.
MvAddMv Perform mv ← αA + βB.
MvTransMv Compute the matrix C ← αAHB.
MvDot Compute the vector b where the components are

the individual dot-products of the i-th columns
of A and B, i.e. b[i] = A[i]HB[i].

MvScale Scale the columns of a multivector.
MvNorm Compute the 2-norm of each individual vector

of A.
SetBlock Copy the vectors in A to a subset of vectors in

B.
MvRandom Replace the vectors in A with random vectors.
MvInit Replace each element of the vectors in A with

α.
MvPrint Print the multi-vector to an output stream.

Table 13.1: Methods required by MultiVecTraits interface.

The benefit of using a templated traits class over inheritance is that the latter requires
the user to derive multivectors and operators from Anasazi-defined abstract base classes. The
former, however, defines only local requirements: Anasazi-defined traits classes implemented
as user-developed adapters for the chosen multivector and operator classes.

Anasazi::MultiVecTraits provides routines for the creation of multivectors, as well as their
manipulation. In order to use a specific scalar type and multivector type with Anasazi, there
must exist a template specialization of Anasazi::MultiVecTraits for this pair of classes. A full
list of methods required by Anasazi::MultiVecTraits is given in Table 13.1.

Just as Anasazi::MultiVecTraits defined the interface required to use a multivector class
with Anasazi, Anasazi::OperatorTraits defines the interface required to use the combination
of a specific operator class with a specific multivector class. This interface defines a single
method:

OperatorTraits<ScalarType,MV,OP>::Apply(const OP &Op, const MV &x, MV &y)

This method performs the operation y = Op(x), where Op is an operator of type OP and x
and y are multivectors of type MV. In order to use the combination of OP and MV, there must

13.2. The Anasazi Eigensolver Framework 111

be a specialization of Anasazi::OperatorTraits for ScalarType, OP and MV.
Calling methods of MultiVecTraits and OperatorTraits requires that specializations of

these traits classes have been implemented for given template arguments. Anasazi provides
the following specializations of these traits classes:

• Epetra MultiVector and Epetra Operator (with scalar type double)

• Thyra::MultiVectorBase and Thyra::LinearOpBase (with arbitrary scalar type)
This allows Anasazi to be used with any classes that implement the abstract interfaces
provided by the Thyra package.

• Anasazi::MultiVec and Anasazi::Operator (with arbitrary scalar type)
This allows Anasazi to be used with any classes that implement the abstract base classes
Anasazi::MultiVec and Anasazi::Operator.

For user-specified classes that don’t match one of the above, specializations of Multi-
VecTraits and OperatorTraits will need to be created by the user for use by Anasazi. Test
routines Anasazi::TestMultiVecTraits() and Anasazi::TestOperatorTraits() are pro-
vided by Anasazi to help in testing user-developed adapters.

13.2 The Anasazi Eigensolver Framework

The goals of flexibility and efficiency can interfere with the goals of simplicity and ease of
use. For example, efficient memory use and low-level data access required in scientific codes
can lead to complicated interfaces and violations of standard object-oriented development
practices.

In Anasazi, this problem is addressed by providing a multi-tiered access strategy for
eigensolver algorithms. Anasazi users have the choice of interfacing at one of two levels:
either working at a high-level with a eigensolver manager or working at a low-level directly
with an eigensolver.

Consider as an example the block Davidson iteration. The essence of this iteration can
be distilled into the following algorithm:

1. apply preconditioner N to the current residuals: H = NR

2. use H to expand current basis V

3. use new V to compute a projected eigenproblem

4. solve the projected eigenproblem and form the Ritz vectors X and Ritz values Θ

5. compute the new residuals R

In implementing a block Davidson method, this iteration repeats until the basis V is full
(in which case it is time to restart) or some stopping criterion has been satisfied. Many valid
stopping criteria exist, as well as many different methods for restarting the basis. Both of
these, however, are distinct from the essential iteration as described above. A user wanting
to perform block Davidson iterations could ask the solver to perform these iterations until
a user-specified stopping criterion was satisfied or the basis was full, at which time the user
would perform a restart. This allows the user complete control over the stopping criteria and

112 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

the restarting mechanism, and leaves the eigensolver responsible for a relatively simple bit of
state and behavior.

This is the way that Anasazi has been designed. The eigensolvers (encapsulating an itera-
tion and the associated state) are derived classes of the abstract base class Anasazi::Eigensolver.
The goals of this class are three-fold:

• to define an interface used for checking the status of a solver by a status test;

• to contain the essential iteration associated with a particular eigensolver iteration;

• to contain the state associated with that iteration.

The status tests, assembled to describe a specific stopping criterion and queried by the
eigensolver during the iteration, are represented as subclasses of Anasazi::StatusTest. The
communication between status test and eigensolver occurs inside of the iterate() method
provided by each Anasazi::Eigensolver. This code generally takes the form:

SomeEigensolver::iterate() {
while (statustest.checkStatus(this) != Passed) {
//
// perform eigensolver iterations
//

}
return; // return back to caller

}

Each Anasazi::StatusTest provides a method, checkStatus(), which through queries to
the methods provided by Anasazi::Eigensolver, determines whether the solver meets the cri-
teria defined by that particular status test. After a solver returns from iterate(), the caller
has the option of accessing the state associated with the solver and re-initializing the solver
with a new state.

While this method of interfacing with the solver is powerful, it can be tedious. This
method requires that user construct a number of support classes, in addition to manag-
ing call to Eigensolver::iterate(). The Anasazi::SolverManager class was developed to
address this complaint. A solver manager is a class that wraps around an eigensolver, pro-
viding additional functionality while also handling lower-level interaction with the eigen-
solver that a user may not wish to handle. Solver managers are intended to be easy to
use, while still providing the features and flexibility needed to solve real-world eigenvalue
problems. For example, the Anasazi::BlockDavidsonSolMgr takes only two arguments in its
constructor: an Anasazi::Eigenproblem specifying the eigenvalue problem to be solved and
a Teuchos::ParameterList of options specific to this solver manager. The solver manager in-
stantiates an eigensolver, along with the status tests and other support classes needed by the
eigensolver. To solve the eigenvalue problem, the user simply calls the solve() method of the
solver manager. The solver manager performs repeated calls to the eigensolver iterate()
method, performs restarts and locking, and places the final solution into the eigenproblem.

Users therefore have a number of options for performing eigenvalue computations with
Anasazi:

• use an existing solver manager;
In this case, the user is limited to the functionality provided by the current eigensolvers.

13.3. Anasazi Classes 113

• develop a new solver manager around an existing eigensolver;
The user can extend the functionality provided by the eigensolver, specifying custom
configurations for status tests, orthogonalization, restarting, locking, etc.

• develop a new eigensolver/solver manager;
The user can write an eigensolver for an iteration that is not represented in Anasazi. The
user still has the benefit of the support classes provided by Anasazi, and the knowledge
that the new solver/solver manager can be easily used by anyone already familiar with
Anasazi.

13.3 Anasazi Classes

Anasazi is designed with extensibility in mind, so that users can augment the package with
any special functionality that they need. However, the released version of Anasazi provides
all functionality necessary for solving a wide variety of problems. This section list and briefly
describes the current classes found in Anasazi.

The solution of an eigenvalue problem requires a minimum subset of Anasazi classes. The
following is a list of classes that any Anasazi user must be familiar with to use the package.

Remark 20. Anasazi makes extensive use of the Teuchos utility classes, especially Teu-
chos::RCP (Section 10.7) and Teuchos::ParameterList (Section 10.6). Users are encouraged
to become familiar with these classes and their correct usage.

13.3.1 Anasazi::Eigenproblem

Anasazi::Eigenproblem is a container for the components of an eigenvalue problem, as well
as the solutions. By requiring eigenproblems to derive from Anasazi::Eigenproblem, Anasazi
defines a minimum interface that can be expected of all eigenvalue problems by the classes
that will work with the problems (e.g., eigensolvers and status testers).

Both the eigenproblem and the eigensolver in Anasazi are templated on the scalar type,
the multivector type and the operator type. Before declaring an eigenproblem, users must
choose classes to represent these entities. Having done so, they can begin to specify the
parameters of the eigenvalue problem. The Anasazi::Eigenproblem defines set methods for
the parameters of the eigenproblem. These methods are:

• setOperator - set the operator for which the eigenvalues will be computed

• setA - set the A operator for the eigenvalue problem Ax = Mxλ

• setM - set the M operator for the eigenvalue problem Ax = Mxλ

• setPrec - set the preconditioner for the eigenvalue problem

• setInitVec - set the initial iterate

• setAuxVecs - set the auxiliary vectors, a subspace used to constrain the search space
for the solution

• setNEV - set the number of eigenvalues to be computed

114 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

• setHermitian - specify whether the problem is Hermitian

In addition to these set methods, Anasazi::Eigenproblem defines a method setProblem()
that gives the class the opportunity to perform any initialization that may be necessary
before the problem is handed off to an eigensolver, in addition to verifying that the problem
has been adequately defined.

For each of the set methods listed above, there is a corresponding get function. These
are the functions used by eigensolvers and solver managers to get the necessary information
from the eigenvalue problem. In addition, there are two methods for storing and retrieving
the results of the eigenvalue computation:

const Eigensolution & getSolution();
void setSolution(const Eigensolution & sol);

The Anasazi::Eigensolution structure is described in Section 13.3.2.
Anasazi provides users with a basic implementation of Anasazi::Eigenproblem, called

Anasazi::BasicEigenproblem (Section 13.5). This formulation provides all the functionality
necessary to describe both generalized and standard linear eigenvalue problems.

13.3.2 Anasazi::Eigensolution

The Anasazi::Eigensolution structure was developed in order to facilitate setting and retriev-
ing of solution data. The class contains the following information:

• Teuchos::RCP< MV > Evecs
The computed eigenvectors.

• Teuchos::RCP< MV > Espace
An orthonormal basis for the computed eigenspace.

• std::vector< Value< ScalarType > > Evals
The computed eigenvalues.

• std::vector< int > index
An index into Evecs to enable compressed storage of eigenvectors for real, non-Hermitian
problems.

• int numVecs
The number of computed eigenpairs.

All Anasazi solver managers place the results of the computation in the Anasazi::Eigen-
problem class using an Anasazi::Eigensolution structure. The number of eigensolutions com-
puted is given by field numVecs. The eigenvalues are always stored as two real values, even
when templated on a complex data type or when the eigenvalues are real. Similarly, the
eigenspace can always be represented by a multivector of width numVecs, even for non-
symmetric eigenproblems over the real field. The storage scheme for eigenvectors requires
more finesse.

When solving real symmetric eigenproblems, the eigenvectors can always be chosen to
be real, and therefore can be stored in a single column of a real multivector. When solving
eigenproblems over a complex field, whether Hermitian or non-Hermitian, the eigenvectors

13.3. Anasazi Classes 115

may be complex, but the multivector is defined over the complex field, so that this poses
no problem. However, real non-symmetric problems can have complex eigenvectors, which
prohibits a one-for-one storage scheme using a real multivector. Fortunately, the eigenvectors
in this scenario occur as complex conjugate pairs, so the pair can be stored in two real
vectors. This permits a compressed storage scheme, which uses an index vector stored in the
Eigensolution, allowing conjugate pair eigenvectors to be easily retrieved from Evecs.

The integers in Anasazi::Eigensolution::index take one of three values: {0,+1,−1}. These
values allow the eigenvectors to be retrieved as follows:

• index[i] = 0: the i-th eigenvector is stored uncompressed in column i of Evecs.

• index[i] = +1: the i-th eigenvector is stored compressed, with the real component in
column i of Evecs and the positive complex component stored in column i+1 of Evecs

• index[i] = −1: the i-th eigenvector is stored compressed, with the real component in
column i−1 of Evecs and the negative complex component stored in column i of Evecs

Because this storage scheme is only required for non-symmetric problems over the real field,
all other eigenproblems will result in an index vector composed entirely of zeroes. For the
real non-symmetric case, the +1 index will always immediately precede the corresponding −1
index.

Remark 21. Solver managers all put the computed eigensolution into the eigenproblem class
before returning from solve(). Eigensolvers do not; a user working directly with an eigen-
solver will need to recover the solution directly from the eigensolver state.

13.3.3 Anasazi::Eigensolver

The Anasazi::Eigensolver class defines the basic interface that must be met by any eigen-
solver class in Anasazi. The specific eigensolvers are implemented as derived classes of
Anasazi::Eigensolver. Table 13.2 lists the eigensolver currently implemented in Anasazi.

Solver Description
BlockDavidson A block Davidson solver for Hermitian eigenvalue problems.
BlockKrylovSchur A block Krylov Schur solver for Hermitian or non-Hermitian

eigenvalue problems.
LOBPCG The locally optimal block preconditioned conjugate gradient

method for Hermitian eigenproblems.

Table 13.2: Eigensolvers currently implemented in Anasazi.

Each eigensolver provides two significant types of methods: status methods and solver-
specific state methods. The status methods are defined by the Anasazi::Eigensolver abstract
base class and represent the information that a generic status test can request from any
eigensolver. A list of these methods is given in Table 13.3.

The class Anasazi::Eigensolver, like Anasazi::Eigenproblem, is templated on the scalar
type, multivector type and operator type. The options for the eigensolver are passed through
the constructor, defined by Anasazi::Eigensolver to have the following form:

116 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

Method Description
getNumIters Get the current number of iterations.
getRitzValues Get the most recent Ritz values.
getRitzVectors Get the most recent Ritz vectors.
getRitzIndex Get the Ritz index needed for indexing compressed Ritz vec-

tors.
getResNorms Get the most recent residual norms, with respect to the Or-

thoManager.
getRes2Norms Get the most recent residual 2-norms.
getRitzRes2Norms Get the most recent Ritz residual 2-norms.
getCurSubspaceDim Get the current subspace dimension.
getMaxSubspaceDim Get the maximum subspace dimension.
getBlockSize Get the block size.

Table 13.3: A list of generic status methods provided by Anasazi::Eigensolver.

Eigensolver(
const Teuchos::RCP< Eigenproblem<ST,MV,OP> > &problem,
const Teuchos::RCP< SortManager<ST,MV,OP> > &sorter,
const Teuchos::RCP< OutputManager<ST> > &printer,
const Teuchos::RCP< StatusTest<ST,MV,OP> > &tester,
const Teuchos::RCP< OrthoManager<ST,OP> > &ortho,
ParameterList ¶ms

);

These classes are used as follows:

• problem - the eigenproblem to be solved; the solver will get the problem operators from
here.

• sorter - the sort manager selects the significant eigenvalues; see Section 13.3.6.

• printer - the output manager dictates verbosity level in addition to processing output
streams; see Section 13.3.8.

• tester - the status tester dictates when the solver should quit iterate() and return
to the caller; see Section 13.3.5.

• ortho - the orthogonalization manager defines the inner product and other concepts
related to orthogonality, in addition to performing these computations for the solver;
see Section 13.3.7.

• params - the parameter list specifies eigensolver-specific options; see the documentation
for a list of options support by individual solvers.

In addition to specifying an iteration, an eigensolver also specifies a concept of state, i.e.
the current data associated with the iteration. After declaring an Eigensolver object, the
state of the solver is in an uninitialized state. For most solver, to be initialized mean to be in
a valid state, containing all of the information necessary for performing eigensolver iterations.

13.3. Anasazi Classes 117

Anasazi::Eigensolver provides two methods concerning initialization: isInitialized() indi-
cates whether the solver is initialized or not, and initialize() (with no arguments) instructs
the solver to initialize itself using random data or the initial vectors stored in the eigenvalue
problem.

To ensure that solvers can be used as efficiently as possible, the user needs access to the
state of the solver. To this end, each eigensolver provides low-level methods for getting and
setting the state of the solver:

• getState() - returns a solver-specific structure with read-only pointers to the current
state of the solver.

• initialize(...) - accepts a solver-specific structure enabling the user to initialize the
solver with a particular state.

The combination of these two methods, along with the flexibility provided by status tests,
allows the user almost total control over eigensolver iterations.

13.3.4 Anasazi::SolverManager

Using Anasazi by interfacing directly with eigensolvers is extremely powerful, but can be
tedious. Solver managers provide a way for users to encapsulate specific solving strategies
inside of an easy-to-use class. Novice users may prefer to use existing solver managers, while
advanced user may prefer to write custom solver managers.

Anasazi::SolverManager defines only two methods: a constructor accepting an Anasazi::-
Eigenproblem and a parameter list of solver manager-specific options; and a solve() method,
taking no arguments and returning either Anasazi::Converged or Anasazi::Unconverged. Con-
sider the following example code:

// create an eigenproblem
Teuchos::RCP< Anasazi::Eigenproblem<ScalarType,MV,OP> > problem = ...;
// create a parameter list
Teuchos::ParameterList params;
params.set(...);
// create a solver manager
Anasazi::BlockDavidsonSolMgr<ScalarType,MV,OP> solman(problem,params);
// solve the eigenvalue problem
Anasazi::ReturnType ret = solman.solve();
// get the solution from the problem
Anasazi::Eigensolution sol = problem->getSolution();

Remark 22. Errors in Anasazi are communicated via exceptions. This is outside the scope
of this tutorial; see the Anasazi documentation for more information.

As has been stated before, the goal of the solver manager is to create an eigensolver object,
along with the support objects needed by the eigensolver. Another purpose of many solver
managers is to manage and initiate the repeated calls to the underlying solver’s iterate()
method. For solvers that build a Krylov subspace to some maximum dimension (e.g., Block-
KrylovSchur and BlockDavidson), the solver manager will also assume the task of restarting
the solver when the subspace is full. This is something for which multiple approaches are

118 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

possible. Also, there may be substantial flexibility in creating the support classes (e.g., sort
manager, status tests) for the solver. An aggressive solver manager could even go so far as to
construct a preconditioner for the eigenvalue problem.

These examples are meant to illustrate the flexibility that specific solver managers may
have in implementing the solve() routine. Some of these options might best be incorporated
into a single solver manager, which takes orders from the user via the parameter list given in
the constructor. Some of these options may better be contained in multiple solver managers,
for the sake of code simplicity. It is even possible to write solver managers that contain other
solvers managers; motivation for something like this would be to select the optimal solver
manager at runtime based on some expert knowledge, or to create a hybrid method which
uses the output from one solver manager to initialize another one.

13.3.5 Anasazi::StatusTest

By this point in the tutorial, the purpose of the Anasazi::StatusTest should be clear: to give
the user or solver manager flexibility in stopping the eigensolver iterations in order to interact
directly with the solver.

Many reasons exist for why a user would want to stop the solver from iterating:

• some convergence criterion has been satisfied and it is time to quit;

• some part of the current solution has reached a sufficient accuracy to removed from the
iteration (“locking”);

• the solver has performed a sufficient or excessive number of iterations.

These are just some commonly seen reasons for ceasing the iteration, and each of these
can be so varied in implementation/parametrization as to require some abstract mechanism
controlling the iteration.

The following is a list of Anasazi-provided status tests:

• Anasazi::StatusTestCombo - this status test allows for the boolean combination of other
status tests, creating near unlimited potential for complex status tests.

• Anasazi::StatusTestOutput - this status test acts as a wrapper around another status
test, allowing for printing of status information on a call to checkStatus()

• Anasazi::StatusTestMaxIters - this status test monitors the number of iterations per-
formed by the solver; it can be used to halt the solver at some maximum number of
iterations or even to require some minimum number of iterations.

• Anasazi::StatusTestResNorm - this status test monitors the residual norms of the cur-
rent iterate.

• Anasazi::StatusTestOrderedResNorm - this status test also monitors the residual norms
of the current iterate, but only considers the residuals associated with the most signifi-
cant part of the current iterate.

13.3. Anasazi Classes 119

Option Action
SM Sort eigenvalues in increasing order of magnitude
SR Sort eigenvalues in increasing order of real part
SI Sort eigenvalues in increasing order of imaginary part
LM Sort eigenvalues in decreasing order of magnitude
LR Sort eigenvalues in decreasing order of real part
LI Sort eigenvalues in decreasing order of imaginary part

Table 13.4: Options for Anasazi::BasicSort.

13.3.6 Anasazi::SortManager

The purpose of a sort manager is to separate the eigensolver classes from the sorting func-
tionality required by those classes. This satisfies the flexibility principle sought by Anasazi,
by giving users the opportunity to perform the sorting in whatever manner is deemed to be
most appropriate. Anasazi defines an abstract class Anasazi::SortManager with two methods,
one for sorting real values and one for sorting complex values:

ReturnType sort (..., std::vector<MagnitudeType> &evals,
std::vector<int> *perm)

ReturnType sort (..., std::vector<MagnitudeType> &r_evals,
std::vector<MagnitudeType> &i_evals,
std::vector<int> *perm)

Each of these sort routines will sort the eigenvalues according to some implementation and
optionally return the permutation vector as well (useful for sorting associated vectors).

Anasazi provides a derived class Anasazi::BasicSort. This class provides basic sorting
functionality, described in Table 13.4.

13.3.7 Anasazi::OrthoManager

Orthogonalization and orthonormalization are commonly performed computations in itera-
tive eigensolvers; in fact, for some eigensolvers, they represent the dominant cost. Different
scenarios may require different approaches (e.g., Euclidean inner product versus M inner
product, orthogonal projections versus oblique projections). Combined with the plethora of
available methods for performing these computations, Anasazi has left as much leeway to the
users as possible.

Orthogonalization of multivectors in Anasazi is performed by derived classes of the ab-
stract class Anasazi::OrthoManager. This class provides five methods:

• innerProd(X,Y,Z) - performs the inner product defined by the manager.

• norm(X) - computes the norm induced by innerProd().

• project(X,C,Q) - given an orthonormal basis Q, projects X onto to the space per-
pindicular to colspan(Q), optionally returning the coefficients of X in Q.

• normalize(X,B) - returns an orthonormal basis for colspan(X), optionally returning
the coefficients of X in the computed basis.

120 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

Message type Description
Errors Errors (always printed)
Warnings Warning messages
IterationDetails Approximate eigenvalues, errors
OrthoDetails Orthogonalization/orthonormalization checking
FinalSummary Final computational summary (usually from

SolverManager::solve())
TimingDetails Timing details
StatusTestDetails Status test details
Debug Debugging information

Table 13.5: Message types used by Anasazi::OutputManager.

• projectAndNormalize(X,C,B,Q) - computes an orthonormal basis for subspace
colspan(X) − colspan(Q), optionally returning the coefficients of X in Q and the new
basis.

It should be noted that a call to projectAndNormalize() is not necessarily equivalent
to a call to project() followed by normalize(). This follows from the fact that, for some
orthogonalization managers, a call to normalize() may augment the column span of a rank-
deficient multivector in order to create an orthonormal basis with the same number of columns
as the input multivector. In this case, the code

orthoman.project(X,C,Q);
orthoman.normalize(X,B);

could result in an orthonormal basis X that is not orthogonal to the basis in Q.
Anasazi provides two orthogonalization managers:

• Anasazi::BasicOrthoManager - performs orthogonalization using multiple steps of clas-
sical Gram-Schmidt.

• Anasazi::SVQBOrthoManager - performs orthogonalization using the SVQB orthogo-
nalization technique described by Stathapoulos and Wu.

More information on these orthogonalization managers is available in the Anasazi docu-
mentation.

13.3.8 Anasazi::OutputManager

The output manager in Anasazi exists to provide flexibility with regard to the verbosity of
the eigensolver. Each output manager has two primary concerns: what output is printed and
where the output is printed to. When working with the output manager, output is classified
into one of the message types from Table 13.5.

Output manager in Anasazi are subclasses of the abstract base class Anasazi::Output-
Manager. This class provides the following output-related methods:

• bool isVerbosity (MsgType type) - Find out whether we need to print out informa-
tion for this message type.

13.4. Using the Anasazi adapter to Epetra 121

• void print (MsgType type, const string output) - Send output to the output
manager.

• ostream & stream (MsgType type) - Create a stream for outputting to.

The output manager is meant to ease some of the difficulty associated with I/O in a dis-
tributed programming environment. For example, consider some debugging output requiring
optional computation. For reasons of efficiency, we may want to perform the computation only
if debugging is requested; i.e., isVerbosity(Anasazi::Debug) == true. However, while we
need all nodes to enter the code block to perform the computation, we probably want only
one of them to print the output. Furthermore, the user may want different types of output
treated in a different manner. The abstraction of the printing mechanism allows both of these
goals to be met.

Anasazi provides a single output manager, Anasazi::BasicOutputManager. This class
accepts an output stream from the user. The output corresponding to the verbosity level of
the manager is sent to this stream only on the master node; the output for other nodes is
neglected.

13.4 Using the Anasazi adapter to Epetra

The Epetra package provides the underlying linear algebra foundation for many Trilinos
solvers. By using the Anasazi adapter to Epetra, users not only avoid the trouble of designing
their own multivector and operator classes, but they also gain the ability to utilize any other
Trilinos package which recognizes Epetra classes (such as AztecOO, IFPACK, and others).

In order to use the Anasazi adapter to Epetra, users must include the following file:

#include "AnasaziEpetraAdapter.hpp"

This file simply defines specializations of the Anasazi::MultiVecTraits and Anasazi::Operator-
Traits classes, while also including the Epetra header files defining the multivector and oper-
ator classes.

Because Epetra makes exclusive use of double precision arithmetic, Epetra Operator and
Epetra MultiVector are used only with scalar type double. For brevity, it is useful to declare
type definitions for these classes:

typedef double ST;
typedef Epetra_MultiVector MV;
typedef Epetra_Operator OP;

Multivectors will be of type MV:

Teuchos::RCP<MV> X
= Teuchos::rcp(new MV(...));

Operators can be any subclass of OP, for example, an Epetra CrsMatrix:

Teuchos::RCP<OP> A
= Teuchos::rcp(new Epetra_CrsMatrix(...));

122 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

The Anasazi interface to Epetra defines a specialization of Anasazi::MultiVecTraits for
Epetra MultiVector and a specialization of Anasazi::OperatorTraits for Epetra Operator ap-
plied to Epetra MultiVector. Therefore, we can now specify an eigenproblem and eigensolver
utilizing these computational classes. An example defining an eigenvalue problem and solving
the problem using an Anasazi eigensolver is given in the next section.

13.5 Defining and Solving an Eigenvalue Problem

This section gives sample code for solving a symmetric eigenvalue problem using the Block
Krylov Schur solver manager, Anasazi::BlockKrylovSchurSolMgr. The example code in this
section comes from the Didasko example didasko/examples/anasazi/ex1.cpp.

The first step in solving an eigenvalue problem is to define the eigenvalue problem. Assume
we have chosen classes to represent our scalars, multivectors and operators as ST, MV and OP,
respectively. Given an operator A and a multivector X containing initial vectors, both wrapped
in Teuchos::RCP, we might define the eigenproblem as follows:

Teuchos::RCP< BasicEigenproblem<ST,MV,OP> > MyProblem
= Teuchos::rcp(new BasicEigenproblem<ST,MV,OP>(A,X));

MyProblem->setHermitian(true);
MyProblem->setNEV(4);
bool ret = MyProblem->SetProblem();
if (ret != true) {

// there should be no error in this example :)
}

The first line creates a Anasazi::BasicEigenproblem object and wraps it in a Teuchos::RCP
(Section 10.7). The second line specifies the symmetry of the eigenproblem. The third line
specifies the desired number of eigenvalues and eigenvectors. Lastly, the fourth signals that
we have finished setting up the eigenproblem. This step must be completed before attempting
to solve the problem.

If we were directly using the Anasazi::BlockKrylovSchur eigensolver, we would proceed by
creating all of the support objects needed by the solver: a sort manager, an output manager,
an orthogonalization manager, and a status test.

Instead, we will utilize a solver manager for solving the problem. First, we create a
parameter list to specify the parameters for the solver manager:

int verb = Anasazi::Warnings + Anasazi::Errors
+ Anasazi::FinalSummary + Anasazi::TimingDetails;

Teuchos::ParameterList MyPL;
MyPL.set("Verbosity", verb);
MyPL.set("Which", "SM");
MyPL.set("Block Size", 4);
MyPL.set("Num Blocks", 20);
MyPL.set("Maximum Restarts", 100);
MyPL.set("Convergence Tolerance", 1.0e-8);

Here, we have asked for the eigensolver to output information regarding errors and warn-
ings, as well as to provide a final summary after completing all iterations and to print the

13.5. Defining and Solving an Eigenvalue Problem 123

timing information collected during the solve. We have also specified the tolerance for conver-
gence testing (used to construct a status test); the block size and number of blocks (passed on
to the solver); the desired eigenvalues (given to the sort manager); and the maximum number
of restarts (used by the solver manager, the agent performing the restarts). This solver man-
ager permits other options as well, affecting the step size as well as the convergence criteria;
see the Anasazi documentation.

We now have all of the information needed to declare the solver manager and solve the
problem:

Anasazi::BlockKrylovSchurSolMgr<ST,MV,OP>
MyBlockKrylovSchur(MyProblem, MyPL);

The eigenproblem is solved with the instruction

Anasazi::ReturnType solverreturn = MyBlockKrylovSchur.solve();

The return value of the solver indicates whether the algorithm succeeded or not; i.e.,
whether the requested number of eigenpairs were found to a sufficient accuracy (as defined
by the solver manager). Output from solve() routine in this example might look as follows:

==

BlockKrylovSchur Solver Status

The solver is initialized.
The number of iterations performed is 39
The block size is 4
The number of blocks is 20
The current basis size is 4
The number of auxiliary vectors is 0
The number of operations Op*x is 156

CURRENT RITZ VALUES
Ritz Value Ritz Residual

--
1.620281e-01 9.482040e-15
3.985070e-01 5.712179e-14
3.985070e-01 2.536671e-14
6.349859e-01 4.846649e-11

==

==

TimeMonitor Results

Timer Name Local time (num calls)
--
Operation Op*x 0.001701 (39)

124 Chapter 13. Eigenvalue and Eigenvector Computations with Anasazi

Sorting Ritz values 0.002926 (3)
Computing Schur form 0.09797 (3)
Sorting Schur form 0.01562 (3)
Computing Ritz vectors 0.000213 (1)
Orthogonalization 0.08078 (40)
==

Eigenvectors and eigenvalues can be retrieved from the eigenproblem (where they were
stored by the solver manager) as follows:

Anasazi::Eigensolution<ST,MV> sol = MyProblem->getSolution();

Four examples are provided with the tutorial:

• didasko/examples/anasazi/ex1.cpp: compute the eigenvectors corresponding to the
smallest eigenvalues for a 2D Laplace problem using the block Krylov Schur solver

• didasko/examples/anasazi/ex2.cpp: solves the problem from ex1 using instead the
block Davidson eigensolver

• didasko/examples/anasazi/ex3.cpp: uses the block Krylov Schur solver to solve a
non-Hermitian convection-diffusion problem

• didasko/examples/anasazi/ex4.cpp: uses the LOBPCG solver to solve the 2D Lapla-
cian problem from ex1

14
Solving Nonlinear Systems with NOX

Marzio Sala, Michael Heroux, David Day

NOX is a suite of solution methods for the solution of nonlinear systems of type

F (x) = 0, (14.1)

where

F (x) =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)


is a nonlinear vector function, and the Jacobian matrix of F , J , is defined by

Ji,j =
∂Fi

∂xj
(x).

NOX aims to solver (14.1) using Newton-type methods. NOX uses an abstract vec-
tor and “group” interface. Current implementation are provided for Epetra/AztecOO
objects, but also for LAPACK and PETSc. It provides various strategies for the solu-
tion of nonlinear systems, and it has been designed to be easily integrated into existing
applications.
In this Chapter, we will

• Outline the basic issue of the solution of nonlinear systems (in Section 14.1);

• Introduce the NOX package (in Section 14.2);

• Describe how to introduce a NOX solver in an existing code (in Section 14.3);

• Present Jacobian-free methods (in Section 14.5).

14.1 Theoretical Background

Aim of this Section is to briefly present some aspects of the solution of nonlinear systems,
to establish a notation. The Section is not supposed to be exhaustive, nor complete on this
subject. The reader is referred to the existing literature for a rigorous presentation.

125

126 Chapter 14. Solving Nonlinear Systems with NOX

To solve system of nonlinear equations, NOX makes use of Newton-like methods. The
Newton method defines a suite {xk} that, under some conditions, converges to x, solution
of (14.1). The algorithm is as follows: given x0, for k = 1, . . . until convergence, solve

Jk(xk−1) (xk − xk−1) = −F (xk−1), Jk(xk−1) =
[
∂F

∂x
(xk−1)

]
. (14.2)

Newton method introduces a local full linearizion of the equations. Solving a system of linear
equations at each Newton step can be very expensive if the number of unknowns is large, and
may not be justified if the current iterate is far from the solution. Therefore, a departure
from the Newton framework consists of considering inexact Newton methods, which solve
system (14.2) only approximatively.

In fact, in practical implementation of the Newton method, one or more of the following
approximations are used:

1. The Fréchet derivative Jk for the Newton step is not recomputed at every Newton step;

2. The equation for the Newton step (14.2) is solved only inexactly;

3. Defect-correction methods are employed, that is, Jk is numerically computed using low-
order (in space) schemes, while the right-hand side is built up using high-order methods.

For a given initial guess, “close enough” to the solution of (14.1), the Newton method
with exact linear solves converges quadratically. In practice, the radius of convergence is
often extended via various methods. NOX provides, among others, line search techniques and
trust region strategies.

14.2 Creating NOX Vectors and Group

NOX is not based on any particular linear algebra package. Users are required to supply meth-
ods that derive from the abstract classes NOX::Abstract::Vector (which provides support
for basic vector operations as dot products), and NOX::Abstract::Group (which supports the
linear algebra functionalities, evaluation of the function G and, optionally, of the Jacobian
J).

In order to link their code with NOX, users have to write their own instantiation of
those two abstract classes. In this tutorial, we will consider the concrete implementations
provided for Epetra matrices and vectors. As this implementation is separate from the NOX
algorithms, the configure option --enable-nox-epetra has to be specified (see Section 1.2)1.

14.3 Introducing NOX in an Existing Code

Two basic steps are required to implement a NOX::Epetra interface. First, a concrete class
derived from NOX::Epetra::Interface has to be written. This class must define the following
methods:

1. A method to compute y = F (X) for a given x. The syntax is
1Other two concrete implementation are provided, for LAPACK and PETSc. The user may wish to con-

figure NOX with --enable-nox-lapack or --enable-nox-petsc. Examples can be compiled with the options
--enable-nox-lapack-examples, --enable-nox-petsc-examples, and -enable-nox-epetra-exemples.

14.3. Introducing NOX in an Existing Code 127

computeF(const Epetra_Vector & x, Epetra_Vector & y,
FillType flag)

with x and y two Epetra Vectors, and flag an enumerated type that tells why this
method was called. In fact, NOX has the ability to generate Jacobians based on nu-
merical differencing. In this case, users may want to compute an inexact (and hopefully
cheaper) F , since it is only used in the Jacobian (or preconditioner).

2. A function to compute the Jacobian, whose syntax is

computeJacobian(const Epetra_Vector & x,
Epetra_Operator * Jac)

This method is optional optional method. It should be implemented when users wish
to supply their own evaluation of the Jacobian. If the user does not wish to supply
their own Jacobian, they should implement this method so that it throws an error if
it is called. This method should update the Jac operator so that subsequent Epe-
tra Operator::Apply() calls on that operator correspond to the Jacobian at the current
solution vector x.

3. A method which fills a preconditioner matrix, whose syntax is

computePrecMatrix(const Epetra_Vector & x,
Epetra_RowMatrix & M)

It should only contain an estimate of the Jacobian. If users do not wish to supply their
own Preconditioning matrix, they should implement this method such that if called, it
will throw an error.

4. A method to apply the user’s defined preconditioner. The syntax is

computePreconditioner(const Epetra_Vector & x, Epetra_Operator & M)

The method should compute a preconditioner based upon the solution vector x and store
it in the Epetra Operator M. Subsequent calls to the Epetra Operator::Apply method
will apply this user supplied preconditioner to epetra vectors.

Then, the user can construct a NOX::Epetra::Group, which contains information about
the solution technique. All constructors require:

• A parameter list for printing output and for input options, defined as NOX::Parameter::List.

• An initial guess for the solution (stored in an Epetra Vector object);

• an operator for the Jacobian and (optionally) and operator for the preconditioning
phase. Users can write their own operators. In particular, the Jacobian can be defined
by the user as an Epetra Operator,

Epetra_Operator & J = UserProblem.getJacobian(),

128 Chapter 14. Solving Nonlinear Systems with NOX

created as a NOX matrix-free operator,

NOX::Epetra::MatrixFree & J = MatrixFree(userDefinedInterface,
solutionVec),

or created by NOX using a finite differencing,

NOX::Epetra::FiniteDifference & J = FIXME...

At this point, users have to create an instantiation of the NOX::Epetra::Interface de-
rived object,

UserInterface interface(...),

and finally construct the group,

NOX::Epetra::Group group(printParams, lsParams, interface).

14.3.1 A Simple Nonlinear Problem

As an example. define F : R2 → R2 by

F (x) =
(

x2
1 + x2

2 − 1
x2 − x2

1

)
.

With this choice of F , the exact solutions of (14.1) are the intersections of the unity circle
and the parabola x2 − x2

1. Simple algebra shows that one solution lies in the first quadrant,
and has coordinates

α =

√√
5− 1
2

,

√
5− 1
2

 ,

the other being the reflection of α among the x2 axis.
Code didasko/examples/nox/ex1.cpp applies the Newton method to this problem, with

x0 = (0.5, 0.5) as a starting solution. The output is approximatively as follows:

[msala:nox]> mpirun -np 1 ./ex1.exe

-- Nonlinear Solver Step 0 --
f = 5.590e-01 step = 0.000e+00 dx = 0.000e+00

-- Nonlinear Solver Step 1 --
f = 2.102e-01 step = 1.000e+00 dx = 3.953e-01

-- Nonlinear Solver Step 2 --
f = 1.009e-02 step = 1.000e+00 dx = 8.461e-02

14.3. Introducing NOX in an Existing Code 129

-- Nonlinear Solver Step 3 --
f = 2.877e-05 step = 1.000e+00 dx = 4.510e-03 (Converged!)

-- Final Status Test Results --
Converged....OR Combination ->
Converged....F-Norm = 2.034e-05 < 2.530e-04

(Length-Scaled Two-Norm, Relative Tolerance)
??...........Number of Iterations = -1 < 20

-- Parameter List From Solver --
Direction ->
Method = "Newton" [default]
Newton ->
Linear Solver ->
Max Iterations = 400 [default]
Output ->
Achieved Tolerance = 8.6e-17 [unused]
Number of Linear Iterations = 2 [unused]
Total Number of Linear Iterations = 6 [unused]

Tolerance = 1e-10 [default]
Rescue Bad Newton Solve = true [default]

Line Search ->
Method = "More’-Thuente"
More’-Thuente ->
Curvature Condition = 1 [default]
Default Step = 1 [default]
Interval Width = 1e-15 [default]
Max Iters = 20 [default]
Maximum Step = 1e+06 [default]
Minimum Step = 1e-12 [default]
Optimize Slope Calculation = false [default]
Recovery Step = 1 [default]
Recovery Step Type = "Constant" [default]
Sufficient Decrease = 0.0001 [default]
Sufficient Decrease Condition = "Armijo-Goldstein" [default]

Output ->
Total Number of Failed Line Searches = 0 [unused]
Total Number of Line Search Calls = 3 [unused]
Total Number of Line Search Inner Iterations = 0 [unused]
Total Number of Non-trivial Line Searches = 0 [unused]

Nonlinear Solver = "Line Search Based"

130 Chapter 14. Solving Nonlinear Systems with NOX

Output ->
2-Norm of Residual = 2.88e-05 [unused]
Nonlinear Iterations = 3 [unused]

Printing ->
MyPID = 0 [default]
Output Information = 2
Output Precision = 3 [default]
Output Processor = 0 [default]

Computed solution :
Epetra::Vector

MyPID GID Value
0 0 0.786
0 1 0.618

Exact solution :
Epetra::Vector

MyPID GID Value
0 0 0.786
0 1 0.618

14.4 A 2D Nonlinear PDE

In this Section, we consider the solution of the following nonlinear PDE problem:{
−∆u + λeu = 0 in Ω = (0, 1)× (0, 1)

u = 0 on ∂Ω.
(14.3)

For the sake of simplicity, we use a finite difference scheme ona Cartesian grid, with constant
mesh sizes hx and hy. Using standard procedures, the discrete equation at node (i, j) reads

−ui−1,j + 2ui,j − ui+1,j

h2
x

+
−ui,j−1 + 2ui,j − ui,j+1

h2
y

− λeui,j = 0.

In example didasko/examples/nox/ex2.cpp, we build the Jacobian matrix as an Epe-
tra CrsMatrix, and we use NOX to solve problem (14.3) for a given value of λ. The example
shows how to use NOX for more complex cases. The code defines a class, here called PDEProb-
lem, which contains two main methods: One to compute F (x) for a given x, and the other
to update the entries of the Jacobian matrix. The class contains all the problem definitions
(here, the number of nodes along the x-axis and the y-axis and the value of λ). In more
complex cases, a similar class may have enough information to compute, for instance, the
entries of J using a finite-element approximation of the PDE problem.

The interface to NOX, here called SimpleProblemInterface, accepts a PDEProblem as a
constructor,

SimpleProblemInterface Interface(&Problem);

Once a NOX::Epetra:Interface object has been defined, the procedure is almost identical to
that of the previous Section.

14.5. Jacobian-free Methods 131

14.5 Jacobian-free Methods

In Section 14.4, the entries of the Jacobian matrix have been explicitly coded. Sometimes, it
is not always possible nor convenient to compute the exact entries of J . For those cases, NOX
can automatically build Jacobian matrices based on finite difference approximation, that is,

Ji,j =
Fi(u + hjej)− Fi(x)

hj
,

where ej is the j-unity vector. Sophisticated schemes are provided by NOX, to reduce the
number of function evaluations.

14.6 Concluding Remarks on NOX

The documentation of NOX can be found in [KP04].
A library of continuation classes, called LOCA [SBRP+01, SLPS02], is included in the

NOX distribution. LOCA is a generic continuation and bifurcation analysis package, designed
for large-scalr applications.The algorithms are designed with minimal interface requirements
over that needed for a Newton method to read an equilibrium solution. LOCA is built upon
the NOX package. LOCA provided functionalities for single parameter continuation and
multiple continuation. Also, LOCA provides a stepper class that repeatedly class the NOX
nonlinear solver to compute points along a continuation curve. We will not cover LOCAL in
this tutorial. The interested reader is referred to the LOCA documentation.

132 Chapter 14. Solving Nonlinear Systems with NOX

15
Partitioning and Load Balancing with
Isorropia and Zoltan
Erik G. Boman

In order to get good parallel performance, the data distribution (map) is important.
Poor data distribution can both lead to high communication among processes and also
load imbalance, that is, some processes have more work than others.
Trilinos provides two packages for partitioning and load balancing: Zoltan and Isorropia.
While Zoltan has a generic, data-structure-neutral interface, Isorropia provides Epetra
interfaces to Zoltan that are more convenient for many Trilinos users.

15.1 Background

In parallel linear algebra applications, a critical part is to distribute the matrices among
processes (processors). The vectors are often distributed to conform with the appropriate
matrices, though not always. Matrices can be partitioned either along rows, columns, or by
a 2-dimensional block decomposition. We limit our discussion to 1-dimensional data distri-
butions, in particular, row distributions (which are best supported in Epetra). In this case,
partitioning dense matrices is easy. For a matrix with n rows and with p processes, sim-
ply give each process n/p rows. For sparse matrices, the situation is more complicated. To
achieve load-balance, one may wish that each process obtains approximately the same number
of rows, or alternatively, similar number of nonzero entries. Additionally, the communica-
tion cost when applying the matrix should be small. Specifically, for iterative solvers, the
communication cost in a matrix-vector product should be minimized.

A common abstraction of this problem is graph partitioning. This model assumes the
matrix is symmetric, so the sparsity pattern of the matrix can be represented by an undirected
graph. The graph partitioning problem is to partition the vertices into p sets such that the
number of edges between sets are minimized. The number of cut edges approximates the
communication cost in the parallel computation. Although graph partitioning is NP-hard to
solve exactly, there are several fast algorithms that work well in practice. Zoltan provides a
common interface to graph partitioners (and other algorithms). At present, the most widely
used software for graph partitioning, are the METIS and ParMETIS [Kar, KK99] packages
from University of Minnesota.

Recently, it has been shown [CA99] that hypergraph partitioning is a more accurate model
for parallel matrix-vector communication cost. A parallel hypergraph partitioner is available
in Zoltan [DBH+06, CBD+07] An advantage of hypergraph partitioning is that it also applies
to rectangular matrices, not just square matrices.

133

134 Chapter 15. Partitioning and Load Balancing with Isorropia and Zoltan

15.2 Partitioning Methods

Zoltan and Isorropia currently support two types of partitioning methods: geometric and
graph/hypergraph. The geometric methods are convenient if you have a vector of points in
space, for example particles, or mesh points. The partitioner will then partition these points
such that points that are close in Euclidean space will be assigned to the same or a nearby
process.

The graph/hypergraph methods do not use geometry but rather rely on connectivity
information, e.g., the sparsity pattern of a matrix. Multilevel algorithms for (hyper-)graph
partitioning give high-quality partitionings, but take longer to compute than geometric meth-
ods.

15.3 Isorropia

Isorropia is the preferred partitioning package for most Trilinos users since it supports Epetra.
The actual partitioning is done by calling Zoltan, so Zoltan is a required dependency.

Isorropia provides a simple interface for new users: createBalancedCopy. The input is
an Epetra distributed data object (matrix, vector), and the output is a copy of the object
(matrix, vector) but with a different (better) map (distribution):

Epetra_CrsMatrix *A; // Original matrix
Epetra_CrsMatrix *bal_A; // Balanced matrix
bal_A = Isorropia::createBalancedCopy(A);

Note that the user is responsible for deallacating balA after use. The createBalancedCopy
interface is rather limited and mainly intended for beginners. The full-fledged (primary) API
contains the following three classes:

1. Partitioner

2. Redistributor

3. CostDescriber

The Partitioner performs the partitioning, but does not move any data. The Redistributor
takes user data and a Partitioner as input, and redistributes the user data. The CostDescriber
is optional and can be used to provide costs (weights) to the Partitioner for problem-specific
partitioning.

Note that the primary API uses Teuchos::RCP reference-counted pointers for safer memory
management.

Epetra_CrsMatrix A;
Partitioner part(Teuchos::rcp(A));
Redistributor rd(Teuchos::rcp(part));
Teuchos::RCP<Epetra_CrsMatrix> bal_A = rd.redistribute(A);

The default partitioning method in Isorropia is hypergraph partitioning for a sparse ma-
trix, and RCB for a vector.

Isorropia only supports a small number of parameters. The parameters are case insensitive.
Advanced users who wish to specify detailed options should use Zoltan parameters. Isorropia
supports a parameter sublist Zoltan, and these parameters are passed on to Zoltan.

15.4. Zoltan 135

15.4 Zoltan

Zoltan is a general-purpose package for parallel data management, including partitioning and
load balancing [DBH+02]. Zoltan was developed independently of Trilinos, and does not
depend on any other Trilinos packages. Thus, it can be built and used as a stand-alone
library, if desired. Zoltan was written in C but also provides C++ and Fortran90 wrapper
interfaces.

Zoltan currently provides all the partitioning methods in Isorropia. Zoltan also supports
several third-party libraries, including the popular graph partitioners ParMetis and Scotch.
To build Zoltan with ParMetis, you need to turn on TPL ENABLE parmetis in Cmake. Zoltan
TPLs can also be used via Isorropia.

136 Chapter 15. Partitioning and Load Balancing with Isorropia and Zoltan

16
Templated Distributed Linear Algebra
Objects with Tpetra
Marzio Sala

Tpetra is a package of classes for the construction and use of serial and distributed
templated linear algebra objects, such as vectors, multi-vectors, and matrices. Tpetra is
a direct descendant of Epetra, and as such it implements the Petra model. It provides
capabilites that are very close to that of Epetra, but in a fully templated fashion.
This Chapter will:

• Briefly introduce the concepts behind the design of Tpetra and templated pro-
gramming (in Section 16.1);

• Presents the basic classes (in Section 16.2);

• Shows how to define and use vectors (in Section 16.4);

• Describes the matrix format (in Section 16.5).

This chapter only gives a broad overview of the Tpetra project; more details can be
found in [SH05b] and on the Tpetra web page.

16.1 Introduction

The Epetra package, described in the previous Chapters, has proven to be very successful,
robust, portable, and efficient. Its only drawback is that it only works with double-precision
real values and integers. It cannot be used with complex or arbitrary-precision data, for
example. Therefore, Epetra developers decided to create a new package, with most of Epetra’s
capabilities, and a full support for templated programming as well. Two major types are used
in Tpetra: the ordinal type and the scalar type1 As the name suggets, the OrdinalType is
used to store information on how many of something is available. For example, this is the
datatype for element IDs, or or as a counting type. In Epetra, the OrdinalType is always
int. In Tpetra, it will most likely be an int or long. However, it could be any type that
is mathematically countable. ScalarType is the type of the actual data. In Epetra, this is
always double; in Tpetra, it can for example be complex<double>, or almost any other type.
For example, a small 3× 3 matrix can be a valid type.

1Actually Tpetra is based on two other types, but most users will only make use of ordinal and scalar types.
Please consult the Tpetra manual for more details.

137

138 Chapter 16. Templated Distributed Linear Algebra Objects with Tpetra

Remark 23. Changing Epetra to support programming involved quite more than simply re-
place all int and double instances with OrdinalType and ScalarType; in fact, almost all
the Tpetra code is entirely new. However, since Tpetra developers reused many design and
patterns from Epetra, it will be relatively easy for Epetra users to switch to Tpetra.

To use Tpetra, one has to know something about Teuchos; see Chapter 10 for an overview
of this package. Although internally used for several tasks (the smart pointers, the BLAS
kernels, and the flops-counting of all objects), Tpetra users mostly have to care only about
the traits mechanism.

Traits are an important component of any templated code. Using arbitary data types
requires some care in code writing. Since the actual type is not known, it is very important
not to make assumptions like someVar = 5.0, which may not works for a given data type.
(For example, this operation may not be defined for a type representing a 3× 3 matrix.) To
solve this problem, a design pattern known as traits is adopted. Tpetra takes advantage of
two Teuchos classes, ScalarTraits and OrdinalTraits, to define traits. Two traits are of
particular importance: one and zero. Zero is the mathematical zero, that is, the value such
that x×0 = 0 ∀x. One is the unity or identity, that is the value such that x×1 = x∀x. As long
as a type as these two traits defined, and defines the basic operations such as =,+,−,×, /,
then this type can be used as OrdinalType or ScalarType.

16.2 A Basic Tpetra Code

We now introduce the basic components of a basic Tpetra code. First, we need to include
the header files:

#include "Tpetra_ConfigDefs.hpp"
#ifdef TPETRA_MPI
#include "Tpetra_MpiPlatform.hpp"
#include "Tpetra_MpiComm.hpp"
#else
#include "Tpetra_SerialPlatform.hpp"
#include "Tpetra_SerialComm.hpp"
#endif
#include "Teuchos_ScalarTraits.hpp"

Then, we define (using a typedef statement) the ordinal type and scalar type:

typedef int OrdinalType;
typedef double ScalarType;

Since the generic assingment myVar = 0 or myVar = 1 may not work with a given ordinal or
scalar type, we must define four variables, containing the value zero and one for both ordinal
and scalar type; Teuchos::ScalarTraits is used for this operation:

OrdinalType const OrdinalZero = Teuchos::ScalarTraits<OrdinalType>::zero();
OrdinalType const OrdinalOne = Teuchos::ScalarTraits<OrdinalType>::one();

ScalarType const ScalarZero = Teuchos::ScalarTraits<ScalarType>::zero();
ScalarType const ScalarOne = Teuchos::ScalarTraits<ScalarType>::one();

16.2. A Basic Tpetra Code 139

At this point, exactly as it was done with Epetra, one has to define a communicator, either
serial or parallel:

#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Tpetra::MpiComm<OrdinalType, ScalarType> Comm(MPI_COMM_WORLD);
#else
Tpetra::SerialComm<OrdinalType, ScalarType> Comm;
#endif

Parallel communication is done using class Tpetra::Comm, whose functionalities are very
close to that of the Epetra Comm class. Both classes provide an insulating layer between the
actual communications library used and the rest of Tpetra; this makes Epetra and Tpetra
codes accessible in serial, MPI or shared memory environments.

The most important difference between Epetra and Tpetra communicator class is in the
nomenclature. Epetra uses the term processor, while Tpetra adopts the more general im-
age. This is because often the same processor runs multiple MPI jobs, or vice-versa, several
processors may be running a single MPI job. Therefore, the term memory image defines a
running copy of the code.

Tpetra::Comm privdes the same collective communication operations that Epetra Comm
does. In additiona, it provudes several point-to-point operations that were not part of Epe-
tra Comm. Among these new operations, one has for example blocking sends and blocking
receives.

An example of usage is as follows. First, let us define two working arrays, of type
ScalarType and size 2

OrdinalType size = 2;
vector<ScalarType> V(size), W(size);

The values of V can be broadcasted from image 0 with instruction

int RootImage = 0;
Comm.broadcast(&V[0], size, RootImage);

or use sumAll() as

Comm.maxAll(&V[0], &W[0], size);

Example didasko/examples/tpetra/ex1.cpp shows the usage of Tpetra::Comm objects.

Remark 24. Note that using MPI with Tpetra is not as simple as it is with Epetra. Since
Epetra is based on int and double data types, one simply has to transmit data using MPI INT
or MPI DOUBLE. In Tpetra, instead, the data type is in principle not known: a data type may
not be contiguous in memory, or be a user-defined class containing pointers or subclasses.
The solution adopted by Tpetra developers involves traits. In this tutorial we suppose that the
scalar type is one among float, double or complex<double>; for more involved types please
contact the Tpetra developers.

Tpetra needs an additional class that does have no equivalence in the Epetra world: the
Tpetra::Plaform class. This class is responsible for creating Comm instances. This class

140 Chapter 16. Templated Distributed Linear Algebra Objects with Tpetra

is required by the templated approach of Tpetra. In fact, virtual member functions and
tamplates are mutually exclusive: virtual member functions cannot be templated. Or, more
precisely, they can be templated at the class level, but not at the fuction level. More details
on this subject can be found in [SH05b].

Generally, two platforms must be created: one for OrdinalType’s, and the other for Scalar-
Type’s. The general syntax is:

#ifdef HAVE_MPI
const Tpetra::MpiPlatform <OrdinalType, OrdinalType>
platformE(MPI_COMM_WORLD);

const Tpetra::MpiPlatform <OrdinalType, ScalarType>
platformV(MPI_COMM_WORLD);

#else
const Tpetra::SerialPlatform <OrdinalType, OrdinalType> platformE;
const Tpetra::SerialPlatform <OrdinalType, ScalarType> platformV;
#endif

At this point, one can insert any of the snippets later presented. Before quitting main(),
one has to close MPI:

#ifdef HAVE_MPI
MPI_Finalize() ;
#endif
return(EXIT_SUCCESS);

16.3 Spaces

In the Tpetra lingo, a space is a set of elements, distributed across the available images. The
Epetra equivalence are the Epetra Map and Epetra BlockMap.

Tpetra has three space classes: Tpetra::ElementSpace, Tpetra::ElementBlockSpace, and
the Tpetra::VectorSpace.

Tpetra::ElementSpace objects are defined to have elements of size one, while variable
element sizes are supported by the Tpetra::BlockElementSpace class. Tpetra::VectorSpace,
instead, serves two purposes. In addition to creating Tpetra::Vectors, it acts as an “insulat-
ing” class between Tpetra::Vector’s and ElementSpace and BlockElementSpace. Through this
mechanism, Tpetra::Vector’s can be created and manipulated using one nonambiguous set of
vector indices, regardless of if it uses an Tpetra::ElementSpace or a Tpetra::BlockElementSpace
for distribution.

The distribution of elements in a Tpetra::ElementSpace or Tpetra::BlockElementSpace
can be arbitrary. Perhaps the simplest way to create a space is to specify the global element
of elements:

OrdinalType length = 10;
OrdinalType indexBase = OrdinalZero;
Tpetra::ElementSpace<OrdinalType>

elementSpace(length, indexBase, platformE);
Tpetra::VectorSpace<OrdinalType, ScalarType>

vectorSpace(elementSpace, platformV);

16.4. Creating and Using Vectors 141

More involved constructors exist as well, and they are not covered here because their usage
is basically equivalent to that of Epetra Map’s.

Some methods of Tpetra::ElementSpace are:

• getNumGlobalElements() returns the number of elements in this calling object;

• getNumMyElements() returns the number of elements belonging to the calling image;

• getLID(OrdinalType GID) returns the local ID of the global ID passed in, or throws
exception 1 if not found on the calling image;

• getGID(OrdinalType LID) returns the global ID of the local ID passed in, or throws
exception 2 if not found on the calling image.

• operators == and != can be used to compare two spaces.

Tpetra::VectorSpace’s have similar query methods:

• getNumGlobalEntries() returns the number of entries in the calling object;

• getNumMyEntries() return the number of entries belonging to the calling image.

• getLocalIndex(OrdinalType globalIndex) returns the local index for a given global
index.

• OrdinalType getGlobalIndex(OrdinalType localIndex) returns the global index for
a given local index.

• isMyLocalIndex (OrdinalType localIndex) returns true if the local index value passed
in is found on the calling image, returns false if it doesn’t.

• isMyGlobalIndex(OrdinalType globalIndex) returns true if the global index value
passed in is found the calling image, returns false if it doesn’t.

16.4 Creating and Using Vectors

The most basic unit of linear algebra is the vector, implemented by class Tpetra::Vector.
Vectors can be used to perform many mathematical operations, such as scaling, norms, dot
products, and element-wise multiplies. It is also be used in conjunction with anothe Tpetra
object, Tpetra::CisMatrix, described in the Section 16.5.

Tpetra::Vector is templated on ScalarType for the vector entries, and on OrdinalType for
the vector indices. A VectorSpace object (described in Section 16.2) is needed for all Vector
objects.

Note that for most of the mathematical methods that set this to the result of an operation
on vectors passed as parameters, the this vector can be used as one of the parameters (unless
otherwise specified).

Given a vectorSpace, a Teptra::Vector is created as

Tpetra::Vector<OrdinalType, ScalarType> v1(vectorSpace);

Several methods are available to define the elements of a vector. To set all the elements
to the same value, one can do:

v1.setAllToScalar(ScalarOne);

142 Chapter 16. Templated Distributed Linear Algebra Objects with Tpetra

Otherwise, by using the [] operator,

OrdinalType MyLength = elementSpace.getNumMyElements();

for (OrdinalType i = OrdinalZero ; i < MyLength ; ++i)
v1[i] = (ScalarType)(10 + i);

Note that all Tpetra::Vector entries can only be accessed through their local index values.
Global index values can be converted to local indices by using the VectorSpace::getLocalIndex
method.

Another way is to extract a view of the internally stored data array (again, or all locally
owned values):

OrdinalType NumMyEntries = v1.getNumMyEntries();

vector<ScalarType*> data(NumMyEntries);
v1.extractView(&data[0]);

for (OrdinalType i = OrdinalZero ; i < MyLength ; ++i)
*(data[i]) = (ScalarType)(100 + i);

Several methods are associated with a Tpetra::Vector object. For example,
scale(ScalarType scalarThis) scales the current values of the vector, norm1() returns
the 1-norm, norm2() returns the 2-norm, normInf() the ∞norm, minValue() computes the
minumum value of the vector, maxValue() the maximum value, and meanValue() returns
the mean (average) value. Update operations can be performed using method update(); for
example, x = α ∗ x + β ∗ y is computed by

x.update(beta, y, alpha);

while x = α ∗ x + β ∗ y + γz by

x.update(beta, y, gamma, y, alpha);

Finally, vectors can be printed as cout << v1.

16.5 Creating and Using Matrices

In Tpetra, matrices are defined by the Tpetra:;CisMatrix class. This class is meant for
matrices that are either row- or column-oriented; this property is set in the constructor.

Constructing Tpetra::CisMatrix objects is a multi-step process. The basic steps are as
follows:

1. Create a Tpetra::CisMatrix instance, using one of the constructors.

2. Enter values using the submitEntries methods.

3. Complete construction by calling fillComplete.

We now show these steps for the creationo of a diagonal, distributed matrix. We suppose that
elementSpace and vectorSpace are valid Tpetra::ElementSpace and Tpetra::VectorSpace,
respectively.

First, if not already available, we need to extract the list of locally owned D’s from
elementSpace,

16.5. Creating and Using Matrices 143

OrdinalType NumMyElements = elementSpace.getNumMyElements();
vector<OrdinalType> MyGlobalElements = elementSpace.getMyGlobalElements();

Then, we instantiate a Tpetra::CisMatrix object and we insert one element at-a-time:

Tpetra::CisMatrix<OrdinalType,ScalarType> matrix(vectorSpace);

for (OrdinalType LID = OrdinalZero ; LID < NumMyElements ; ++LID)
{
OrdinalType GID = MyGlobalElements[LID];
// add the diagonal element of value ‘GID’
matrix.submitEntry(Tpetra::Insert, GID, (ScalarType)GID, GID);

}

Method submitEntry requires the CombineMode (Tpetra::Insert, Tpetra::Add,
Tpetra::Replace), the row (or column) ID, the value, and the column (or row) ID of the
element to be inserted. Method submitEntries() can also be used to submit multiple entries
with just one function call. The last step is performed by calling matrix.fillComplete().
Prior to calling fillComplete, data is stored in a format optimized for easy and efficient
insertions/deletions/modifications. It is not a very efficient form for doing matvec operations
though. After calling fillComplete, the data is transformed into a format optimized for matvec
operations. It is not very efficient at modifying data though. So after fillComplete() has
been called, the matrix should be viewed as const, and cannot be modified. Trying to do so
will result in an exception being thrown.

Once freezed, a matrix can be queried for global number of nonzeros, rows, columns,
diagonals, and maximum number of entries per row/column are returned with methods
getNumGlobalNonzeros(), getNumGlobalRows(), getNumGlobalCols(),
getNumGlobalDiagonals(), getGlobalMaxNumEntries(), respectively. The corresponding
local information are returned by similar methods with My instead of Global. Other queries
only have a global meaning: isRowOriented(), isFillCompleted(), normOne(), normInf().

To apply the matrix to a vector x and get the result in y, one can simply write
matrix.apply(x, y, UseHermitian), where UseHermitian is a boolean variable that can
be used to multiply with A or AH .

CisMatrix stores data using Compressed Index Space Storage. This is a generalization of
Compressed Row Storage, but allows the matrix to be either row-oriented or column oriented.
Accordingly, CisMatrix refers to data using a generalized vocabulary. The two main terms
are the primary distribution and the secondary distribution:

In a row-oriented matrix, the primary distribution refers to rows, and the secondary
distribution refers to columns. In a column-oriented matrix, the primary distribution refers
to columns, and the secondary distribution refers to rows.

These distributions are specified by Tpetra::VectorSpace objects. If both the primary
and secondary distributions are specified at construction, information about the secondary
distribution is available from then on. But if only the primary distribution is specified at con-
struction, then CisMatrix will analyze the structure of the matrix and generate a VectorSpace
that matches the distribution found in the matrix. Note that this is done when fillComplete
is called, and so information about the secondary distribution is not available prior to that.

144 Chapter 16. Templated Distributed Linear Algebra Objects with Tpetra

Other two distributions are indeed used. The domain distribution specifies the distribution
of the vector to which the matrix will be applied; while the range distribution specifies the
distribution of the result vector y = Ax.

16.6 Conclusing Remarks

All Tpetra classes that represent a linear algebra object inherit from Teuchos::CompObject.
The flop count of a CompObject represents the nunmber of floating-point operations that
have occurred on the calling image – it is not a global counter.

Tpetra also depends on Kokkos for serial kernels, which are now separated from the
surrounding code, so that more optimized kernels can be developed and used without affecting
Tpetra. Kokkos routines as purely serial; therefore any redistributions needed before or after
the computation must be handled by Tpetra. Kokkos is a collection of the handful of sparse
and dense kernels that determine the much of the performance for preconditioned Krylov
methods. In particular, it contains function class for sparse matrix vector multiplication and
triangular solves, and also for dense kernels that are not part of the standard BLAS.

The classes in this package are written in a way that they can be easily customized via
inheritance, replacing only the small sections of code that are unique for a given platform or
architectures. In this way we hope to provide optimal implementations of these algorithms
for a broad set of platforms from scalar microprocessors to vector multiprocessors.

Kokkos is not intended as a user package, but to be incorporated into other packages that
need high performance kernels. As such, it is not covered in this Tutorial.

Bibliography

[ADLK03] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUMPS home page.
http://www.enseeiht.fr/lima/apo/MUMPS, 2003.

[Axe94] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge,
1994.

[BBC+94] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the solution of linear
systems : building blocks for iterative methods. SIAM, Philadelphia, PA, USA,
1994.

[BCC+97] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Jemmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM Pub., 1997.

[BHLT02] David H Bailey, Yozo Hida, Xiaoye S. Li, and Brandon Thompson. Arprec:
An arbitrary precision computation package. Technical Report LBNL-53651,
Lawrence Berkeley National Laboratory, 2002.

[BHM00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. SIAM,
Philadelphia, PA, USA, 2nd edition, 2000.

[CA99] U. Catalyurek and C. Aykanat. Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel
and Distributed Systems, 10(7):673–693, 1999.

[CBD+07] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and L.A.
Riesen. Hypergraph-based dynamic load balancing for adaptive scientific com-
putations. In Proc. of 21th International Parallel and Distributed Processing
Symposium (IPDPS’07). IEEE, 2007.

[Dav03] Tim Davis. UMFPACK home page. http://www.cise.ufl.edu/research/
sparse/umfpack, 2003.

[DBH+02] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay
Vaughan. Zoltan data management services for parallel dynamic applications.
Computing in Science and Engineering, 4(2):90–97, 2002.

[DBH+06] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek.
Parallel hypergraph partitioning for scientific computing. In Proc. of 20th In-
ternational Parallel and Distributed Processing Symposium (IPDPS’06). IEEE,
2006.

145

146 Bibliography

[HBH+03] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps,
Andrew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan
Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia
National Laboratories, 2003.

[Her02] M. A. Heroux. Epetra Reference Manual, 2.0 edition, 2002.

[Her04] Michael A. Heroux. AztecOO Users Guide. Technical Report SAND2004-3796,
Sandia National Laboratories, 2004.

[Kar] G. Karypis. Metis Home Page. http://www-users.cs.umn.edu/∼karypis/
metis/.

[KK99] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for
irregular graphs. SIAM Review, 41(2):278–300, 1999.

[KP04] Tamara G. Kolda and Roger P. Pawlowski. Nox home page.
http://software.sandia.gov/nox, 2004.

[LD03] Xiaoye Li and James Demmel. SuperLU home page. http://crd.lbl.gov/ xi-
aoye/SuperLU/, 2003.

[LSC04] Na Li, Yousef Saad, and Edmond Chow. Crout versions of ILU for general sparse
matrices. SIAM J. Sci. Comput., 25:716–728, 2004.

[Saa96] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston, 1996.

[SBG96] B. Smith, P. Bjørstad, and William Gropp. Domain Decomposition. Cambridge,
1st edition, 1996.

[SBRP+01] A. G. Salinger, N. M. Bou-Rabee, R. P. Pawlowski, E. D. Wilkes, E. A. Bur-
roughs, R. B. Lehoucq, and L. A. Romero. LOCA: A library of continuation
algorithms - Theroy and implementation manual. Technical report, Sandia Na-
tional Laboratories, Albuquerque, New Mexico 87185, 2001. SAND 2002-0396.

[SDH+96] A. G Salinger, K. D. Devine, G. L. Hennigan, H. K. Moffat, S. A Hutchinson,
and J. N. Shadid. MPSalsa: A finite element computer program for reacting flow
problems part 2 - user’s guide. Technical Report SAND96–2331, Sandia National
Laboratories, 1996.

[SH05a] M. Sala and M. A. Heroux. Robust algebraic preconditioners with IFPACK 3.0.
Technical Report SAND-0662, Sandia National Laboratories, February 2005.

[SH05b] Paul M. Sexton and Michael A. Heroux. The design and evolution of Tpetra.
Technical Report SAND2005, in preparation, Sandia National Laboratories, 2005.

[SHT04] Marzio Sala, Jonathan J. Hu, and Ray. S. Tuminaro. Ml 3.0 smoothed aggregation
user’s guide. Technical Report SAND2004-2195, Sandia National Laboratories,
2004.

Bibliography 147

[SLPS02] A. G. Salinger, R. B. Lehoucq, R. P. Pawlowski, and J. N. Shadid. Computational
bifurcation and stability studies of the 8:1 thermal cavity problem. Internat. J.
Numer. Meth. Fluids, 40(8):1059–1073, 2002.

[SMH+95] John N. Shadid, Harry K. Moffat, Scott A. Hutchinson, Gary L. Hennigan,
Karen D. Devine, and Andrew G. Salinger. MPSalsa: A finite element computer
program for reacting flow problems part 1 - theoretical development. Technical
Report SAND95–2752, Sandia National Laboratories, 1995.

[SS04] Marzio Sala and Ken Stanley. Amesos 1.0 reference guide. Technical Report
SAND2004-2188, Sandia National Laboratories, 2004.

[TH04] Ray S. Tuminaro and Jonathan Hu. Ml home page.
http://www.cs.sandia.gov/ tuminaro/ML Description.html, 2004.

[THHS99] Ray S. Tuminaro, Michael A. Heroux, Scott. A. Hutchinson, and J. N. Shadid.
Official Aztec User’s Guide, Version 2.1. Sandia National Laboratories, Albu-
querque, NM 87185, 1999.

[TT00] C. Tong and R. Tuminaro. ML2.0 Smoothed Aggregation User’s Guide. Technical
Report SAND2001-8028, Sandia National Laboratories, Albq, NM, 2000.

